ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09043
14
32

Deep Learning-based Limited Feedback Designs for MIMO Systems

19 December 2019
Jeonghyeon Jang
Hoon Lee
S. Hwang
Haibao Ren
Inkyu Lee
    AI4CE
ArXivPDFHTML
Abstract

We study a deep learning (DL) based limited feedback methods for multi-antenna systems. Deep neural networks (DNNs) are introduced to replace an end-to-end limited feedback procedure including pilot-aided channel training process, channel codebook design, and beamforming vector selection. The DNNs are trained to yield binary feedback information as well as an efficient beamforming vector which maximizes the effective channel gain. Compared to conventional limited feedback schemes, the proposed DL method shows an 1 dB symbol error rate (SER) gain with reduced computational complexity.

View on arXiv
Comments on this paper