ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01894
  4. Cited By
Convolutional Gaussian Processes

Convolutional Gaussian Processes

6 September 2017
Mark van der Wilk
C. Rasmussen
J. Hensman
    BDL
ArXivPDFHTML

Papers citing "Convolutional Gaussian Processes"

39 / 39 papers shown
Title
Regularized Multi-output Gaussian Convolution Process with Domain
  Adaptation
Regularized Multi-output Gaussian Convolution Process with Domain Adaptation
Wang Xinming
Wang Chao
Song Xuan
Kirby Levi
Wu Jianguo
21
7
0
04 Sep 2024
Hybrid Modeling Design Patterns
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
38
8
0
29 Dec 2023
Gaussian process deconvolution
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
33
5
0
08 May 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
32
5
0
11 Apr 2023
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian
  Optimization
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian Optimization
Jose Pablo Folch
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
36
23
0
11 Nov 2022
Globally Gated Deep Linear Networks
Globally Gated Deep Linear Networks
Qianyi Li
H. Sompolinsky
AI4CE
27
10
0
31 Oct 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
22
6
0
30 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
Unsupervised Restoration of Weather-affected Images using Deep Gaussian
  Process-based CycleGAN
Unsupervised Restoration of Weather-affected Images using Deep Gaussian Process-based CycleGAN
R. Yasarla
Vishwanath A. Sindagi
Vishal M. Patel
40
2
0
23 Apr 2022
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
35
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
148
17
0
23 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
35
23
0
12 Apr 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
24
11
0
18 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
33
4
0
21 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
42
94
0
02 Mar 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
27
15
0
11 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
27
24
0
15 Jan 2020
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
193
0
28 Oct 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
26
19
0
27 May 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GAN
BDL
32
9
0
14 May 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
22
35
0
14 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
53
906
0
26 Apr 2019
Variational Inference of Joint Models using Multivariate Gaussian
  Convolution Processes
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
32
16
0
09 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
46
854
0
18 Jan 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
20
10
0
18 Dec 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
307
0
11 Oct 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
1