Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.03395
Cited By
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
10 August 2017
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models"
50 / 142 papers shown
Title
Injectivity of ReLU networks: perspectives from statistical physics
Antoine Maillard
Afonso S. Bandeira
David Belius
Ivan Dokmanić
S. Nakajima
33
5
0
27 Feb 2023
Mismatched estimation of non-symmetric rank-one matrices corrupted by structured noise
Teng Fu
Yuhao Liu
Jean Barbier
Marco Mondelli
Shansuo Liang
Tianqi Hou
19
1
0
07 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
27
35
0
01 Feb 2023
Near-optimal multiple testing in Bayesian linear models with finite-sample FDR control
Taejoon Ahn
Licong Lin
Song Mei
24
3
0
04 Nov 2022
Grokking phase transitions in learning local rules with gradient descent
Bojan Žunkovič
E. Ilievski
63
17
0
26 Oct 2022
On double-descent in uncertainty quantification in overparametrized models
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
UQCV
46
12
0
23 Oct 2022
Disordered Systems Insights on Computational Hardness
D. Gamarnik
Cristopher Moore
Lenka Zdeborová
AI4CE
38
33
0
15 Oct 2022
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
46
4
0
11 Oct 2022
Bayes-optimal limits in structured PCA, and how to reach them
Jean Barbier
Francesco Camilli
Marco Mondelli
Manuel Sáenz
31
5
0
03 Oct 2022
Equivalence of state equations from different methods in High-dimensional Regression
Saidi Luo
Songtao Tian
13
0
0
25 Sep 2022
Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap
Luca Pesce
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
38
1
0
26 May 2022
The price of ignorance: how much does it cost to forget noise structure in low-rank matrix estimation?
Jean Barbier
Tianqi Hou
Marco Mondelli
Manuel Sáenz
47
14
0
20 May 2022
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
M. Sales-Pardo
R. Guimerà
30
19
0
06 Apr 2022
Learning curves for the multi-class teacher-student perceptron
Elisabetta Cornacchia
Francesca Mignacco
R. Veiga
Cédric Gerbelot
Bruno Loureiro
Lenka Zdeborová
26
21
0
22 Mar 2022
The TAP free energy for high-dimensional linear regression
Jia Qiu
Subhabrata Sen
27
8
0
14 Mar 2022
Bias-variance decomposition of overparameterized regression with random linear features
J. Rocks
Pankaj Mehta
22
12
0
10 Mar 2022
Theoretical characterization of uncertainty in high-dimensional linear classification
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
42
20
0
07 Feb 2022
Noisy linear inverse problems under convex constraints: Exact risk asymptotics in high dimensions
Q. Han
29
3
0
20 Jan 2022
Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning
Ali Bereyhi
Bruno Loureiro
Florent Krzakala
R. Muller
H. Schulz-Baldes
35
2
0
19 Jan 2022
Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
R. Venkataramanan
Kevin Kögler
Marco Mondelli
27
32
0
08 Dec 2021
Towards Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems
Junjie Ma
Ji Xu
A. Maleki
16
3
0
05 Nov 2021
Deep learning via message passing algorithms based on belief propagation
C. Lucibello
Fabrizio Pittorino
Gabriele Perugini
R. Zecchina
43
14
0
27 Oct 2021
Approximate Message Passing for orthogonally invariant ensembles: Multivariate non-linearities and spectral initialization
Xinyi Zhong
Tianhao Wang
Zhou-Yang Fan
29
20
0
05 Oct 2021
Performance of Bayesian linear regression in a model with mismatch
Jean Barbier
Wei-Kuo Chen
D. Panchenko
Manuel Sáenz
40
22
0
14 Jul 2021
Instance-Optimal Compressed Sensing via Posterior Sampling
A. Jalal
Sushrut Karmalkar
A. Dimakis
Eric Price
26
51
0
21 Jun 2021
On the Cryptographic Hardness of Learning Single Periodic Neurons
M. Song
Ilias Zadik
Joan Bruna
AAML
30
27
0
20 Jun 2021
Nonequilibrium thermodynamics of self-supervised learning
D. S. P. Salazar
16
2
0
16 Jun 2021
PCA Initialization for Approximate Message Passing in Rotationally Invariant Models
Marco Mondelli
R. Venkataramanan
24
19
0
04 Jun 2021
LASSO risk and phase transition under dependence
Hanwen Huang
41
3
0
30 Mar 2021
The Geometry of Over-parameterized Regression and Adversarial Perturbations
J. Rocks
Pankaj Mehta
AAML
19
8
0
25 Mar 2021
On the interplay between data structure and loss function in classification problems
Stéphane dÁscoli
Marylou Gabrié
Levent Sagun
Giulio Biroli
29
17
0
09 Mar 2021
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem
Francesca Mignacco
Pierfrancesco Urbani
Lenka Zdeborová
20
34
0
08 Mar 2021
It was "all" for "nothing": sharp phase transitions for noiseless discrete channels
Jonathan Niles-Weed
Ilias Zadik
18
10
0
24 Feb 2021
Implicit Bias of Linear RNNs
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
20
11
0
19 Jan 2021
Solvable Model for Inheriting the Regularization through Knowledge Distillation
Luca Saglietti
Lenka Zdeborová
12
19
0
01 Dec 2020
Statistical and computational thresholds for the planted
k
k
k
-densest sub-hypergraph problem
Luca Corinzia
Paolo Penna
Wojtek Szpankowski
J. M. Buhmann
15
6
0
23 Nov 2020
High-dimensional inference: a statistical mechanics perspective
Jean Barbier
AI4CE
12
5
0
28 Oct 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
23
41
0
26 Oct 2020
Asymptotic Behavior of Adversarial Training in Binary Classification
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
AAML
21
16
0
26 Oct 2020
Approximate Message Passing with Spectral Initialization for Generalized Linear Models
Marco Mondelli
R. Venkataramanan
20
38
0
07 Oct 2020
Replica Analysis of the Linear Model with Markov or Hidden Markov Signal Priors
Lan V. Truong
6
2
0
28 Sep 2020
Strong replica symmetry for high-dimensional disordered log-concave Gibbs measures
Jean Barbier
D. Panchenko
Manuel Sáenz
16
9
0
27 Sep 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
24
133
0
22 Sep 2020
Universality of Linearized Message Passing for Phase Retrieval with Structured Sensing Matrices
Rishabh Dudeja
Milad Bakhshizadeh
29
12
0
24 Aug 2020
Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models
Marco Mondelli
Christos Thrampoulidis
R. Venkataramanan
13
16
0
07 Aug 2020
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
11
46
0
27 Jun 2020
Information theoretic limits of learning a sparse rule
Clément Luneau
Jean Barbier
N. Macris
20
12
0
19 Jun 2020
Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
29
28
0
16 Jun 2020
The role of optimization geometry in single neuron learning
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
14
1
0
15 Jun 2020
Previous
1
2
3
Next