Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.03395
Cited By
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
10 August 2017
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models"
50 / 142 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
135
0
0
06 May 2025
Survey on Algorithms for multi-index models
Joan Bruna
Daniel Hsu
31
0
0
07 Apr 2025
Accurate, provable, and fast nonlinear tomographic reconstruction: A variational inequality approach
Mengqi Lou
K. A. Verchand
Sara Fridovich-Keil
A. Pananjady
33
0
0
13 Mar 2025
Provable Benefits of Unsupervised Pre-training and Transfer Learning via Single-Index Models
Taj Jones-McCormick
Aukosh Jagannath
S. Sen
58
0
0
24 Feb 2025
Spectral Estimators for Multi-Index Models: Precise Asymptotics and Optimal Weak Recovery
Filip Kovačević
Yihan Zhang
Marco Mondelli
70
0
0
03 Feb 2025
The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model
Kaito Takanami
Takashi Takahashi
Ayaka Sakata
40
0
0
27 Jan 2025
Unifying AMP Algorithms for Rotationally-Invariant Models
Songbin Liu
Junjie Ma
77
0
0
02 Dec 2024
Pretrained transformer efficiently learns low-dimensional target functions in-context
Kazusato Oko
Yujin Song
Taiji Suzuki
Denny Wu
41
4
0
04 Nov 2024
On the phase diagram of extensive-rank symmetric matrix denoising beyond rotational invariance
Jean Barbier
Francesco Camilli
Justin Ko
Koki Okajima
34
5
0
04 Nov 2024
Universality of Estimator for High-Dimensional Linear Models with Block Dependency
Toshiki Tsuda
Masaaki Imaizumi
27
0
0
25 Oct 2024
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Vittorio Erba
Emanuele Troiani
Luca Biggio
Antoine Maillard
Lenka Zdeborová
23
0
0
24 Oct 2024
Theoretical limits of descending
ℓ
0
\ell_0
ℓ
0
sparse-regression ML algorithms
Mihailo Stojnic
34
0
0
10 Oct 2024
Statistical Mechanics of Min-Max Problems
Yuma Ichikawa
Koji Hukushima
31
1
0
09 Sep 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
35
6
0
14 Aug 2024
Sampling from the Random Linear Model via Stochastic Localization Up to the AMP Threshold
Han Cui
Zhiyuan Yu
Jingbo Liu
39
0
0
15 Jul 2024
On Naive Mean-Field Approximation for high-dimensional canonical GLMs
Soumendu Sundar Mukherjee
Jiaze Qiu
Subhabrata Sen
40
1
0
21 Jun 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
40
3
0
07 Jun 2024
Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit
Jason D. Lee
Kazusato Oko
Taiji Suzuki
Denny Wu
MLT
87
21
0
03 Jun 2024
Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise
Jean Barbier
Francesco Camilli
Marco Mondelli
Yizhou Xu
32
2
0
31 May 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
70
12
0
24 May 2024
Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits and Optimal Spectral Methods
Yihan Zhang
Marco Mondelli
43
3
0
22 May 2024
High-Dimensional Single-Index Models: Link Estimation and Marginal Inference
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
45
2
0
27 Apr 2024
A replica analysis of under-bagging
Takashi Takahashi
72
3
0
15 Apr 2024
Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing
Gabriel Arpino
Xiaoqi Liu
R. Venkataramanan
25
0
0
11 Apr 2024
From Zero to Hero: How local curvature at artless initial conditions leads away from bad minima
Tony Bonnaire
Giulio Biroli
C. Cammarota
42
0
0
04 Mar 2024
Asymptotic Dynamics of Alternating Minimization for Bilinear Regression
Koki Okajima
Takashi Takahashi
19
2
0
07 Feb 2024
A phase transition between positional and semantic learning in a solvable model of dot-product attention
Hugo Cui
Freya Behrens
Florent Krzakala
Lenka Zdeborová
MLT
35
11
0
06 Feb 2024
Asymptotic generalization error of a single-layer graph convolutional network
O. Duranthon
L. Zdeborová
MLT
46
2
0
06 Feb 2024
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi
Emanuele Troiani
Luca Arnaboldi
Luca Pesce
Lenka Zdeborová
Florent Krzakala
MLT
66
26
0
05 Feb 2024
Universality in block dependent linear models with applications to nonparametric regression
Samriddha Lahiry
Pragya Sur
28
1
0
30 Dec 2023
Inferring the Graph of Networked Dynamical Systems under Partial Observability and Spatially Colored Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
18
1
0
18 Dec 2023
Learning the Causal Structure of Networked Dynamical Systems under Latent Nodes and Structured Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
19
4
0
10 Dec 2023
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training
Yefan Zhou
Tianyu Pang
Keqin Liu
Charles H. Martin
Michael W. Mahoney
Yaoqing Yang
42
7
0
01 Dec 2023
Benchmarking the optimization optical machines with the planted solutions
N. Stroev
N. Berloff
Nir Davidson
35
0
0
12 Nov 2023
Fitting an ellipsoid to random points: predictions using the replica method
Antoine Maillard
Dmitriy Kunisky
28
2
0
02 Oct 2023
High-dimensional robust regression under heavy-tailed data: Asymptotics and Universality
Sining Chen
Leonardo Defilippis
Bruno Loureiro
G. Sicuro
16
10
0
28 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
31
26
0
20 Sep 2023
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
30
26
0
27 Aug 2023
Fundamental limits of overparametrized shallow neural networks for supervised learning
Francesco Camilli
D. Tieplova
Jean Barbier
35
9
0
11 Jul 2023
Bayes optimal learning in high-dimensional linear regression with network side information
Sagnik Nandy
Subhabrata Sen
14
2
0
09 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Asymptotic Characterisation of Robust Empirical Risk Minimisation Performance in the Presence of Outliers
Matteo Vilucchio
Emanuele Troiani
Vittorio Erba
Florent Krzakala
22
1
0
30 May 2023
Escaping mediocrity: how two-layer networks learn hard generalized linear models with SGD
Luca Arnaboldi
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
MLT
37
3
0
29 May 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
34
2
0
28 May 2023
A Three-regime Model of Network Pruning
Yefan Zhou
Yaoqing Yang
Arin Chang
Michael W. Mahoney
31
10
0
28 May 2023
High-dimensional Asymptotics of Denoising Autoencoders
Hugo Cui
Lenka Zdeborová
16
13
0
18 May 2023
Mixed Regression via Approximate Message Passing
Nelvin Tan
R. Venkataramanan
19
7
0
05 Apr 2023
Neural-prior stochastic block model
O. Duranthon
L. Zdeborová
41
3
0
17 Mar 2023
Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture
Minh-Toan Nguyen
Romain Couillet
27
4
0
03 Mar 2023
Sharp thresholds in inference of planted subgraphs
Elchanan Mossel
Jonathan Niles-Weed
Youngtak Sohn
Nike Sun
Ilias Zadik
10
6
0
28 Feb 2023
1
2
3
Next