Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.03395
Cited By
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
10 August 2017
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models"
48 / 48 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
120
0
0
06 May 2025
The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model
Kaito Takanami
Takashi Takahashi
Ayaka Sakata
40
0
0
27 Jan 2025
On the phase diagram of extensive-rank symmetric matrix denoising beyond rotational invariance
Jean Barbier
Francesco Camilli
Justin Ko
Koki Okajima
34
5
0
04 Nov 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
35
6
0
14 Aug 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
70
12
0
24 May 2024
Inferring the Graph of Networked Dynamical Systems under Partial Observability and Spatially Colored Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
16
1
0
18 Dec 2023
Learning the Causal Structure of Networked Dynamical Systems under Latent Nodes and Structured Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
16
4
0
10 Dec 2023
Fitting an ellipsoid to random points: predictions using the replica method
Antoine Maillard
Dmitriy Kunisky
28
2
0
02 Oct 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
31
2
0
28 May 2023
Neural-prior stochastic block model
O. Duranthon
L. Zdeborová
41
3
0
17 Mar 2023
Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture
Minh-Toan Nguyen
Romain Couillet
27
4
0
03 Mar 2023
Sharp thresholds in inference of planted subgraphs
Elchanan Mossel
Jonathan Niles-Weed
Youngtak Sohn
Nike Sun
Ilias Zadik
10
6
0
28 Feb 2023
Injectivity of ReLU networks: perspectives from statistical physics
Antoine Maillard
Afonso S. Bandeira
David Belius
Ivan Dokmanić
S. Nakajima
28
5
0
27 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
20
35
0
01 Feb 2023
Near-optimal multiple testing in Bayesian linear models with finite-sample FDR control
Taejoon Ahn
Licong Lin
Song Mei
24
3
0
04 Nov 2022
Grokking phase transitions in learning local rules with gradient descent
Bojan Žunkovič
E. Ilievski
63
16
0
26 Oct 2022
Disordered Systems Insights on Computational Hardness
D. Gamarnik
Cristopher Moore
Lenka Zdeborová
AI4CE
35
33
0
15 Oct 2022
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
43
4
0
11 Oct 2022
Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap
Luca Pesce
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
38
1
0
26 May 2022
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
M. Sales-Pardo
R. Guimerà
22
19
0
06 Apr 2022
Learning curves for the multi-class teacher-student perceptron
Elisabetta Cornacchia
Francesca Mignacco
R. Veiga
Cédric Gerbelot
Bruno Loureiro
Lenka Zdeborová
23
21
0
22 Mar 2022
The TAP free energy for high-dimensional linear regression
Jia Qiu
Subhabrata Sen
25
8
0
14 Mar 2022
Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning
Ali Bereyhi
Bruno Loureiro
Florent Krzakala
R. Muller
H. Schulz-Baldes
35
2
0
19 Jan 2022
Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
R. Venkataramanan
Kevin Kögler
Marco Mondelli
24
32
0
08 Dec 2021
Approximate Message Passing for orthogonally invariant ensembles: Multivariate non-linearities and spectral initialization
Xinyi Zhong
Tianhao Wang
Zhou-Yang Fan
29
20
0
05 Oct 2021
Performance of Bayesian linear regression in a model with mismatch
Jean Barbier
Wei-Kuo Chen
D. Panchenko
Manuel Sáenz
40
22
0
14 Jul 2021
Instance-Optimal Compressed Sensing via Posterior Sampling
A. Jalal
Sushrut Karmalkar
A. Dimakis
Eric Price
26
51
0
21 Jun 2021
LASSO risk and phase transition under dependence
Hanwen Huang
41
3
0
30 Mar 2021
It was "all" for "nothing": sharp phase transitions for noiseless discrete channels
Jonathan Niles-Weed
Ilias Zadik
15
10
0
24 Feb 2021
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
18
41
0
26 Oct 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
Phase retrieval in high dimensions: Statistical and computational phase transitions
Antoine Maillard
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
23
57
0
09 Jun 2020
Information-Theoretic Limits for the Matrix Tensor Product
Galen Reeves
30
29
0
22 May 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
29
86
0
16 May 2020
The estimation error of general first order methods
Michael Celentano
Andrea Montanari
Yuchen Wu
14
44
0
28 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
165
0
21 Feb 2020
Asymptotic errors for convex penalized linear regression beyond Gaussian matrices
Cédric Gerbelot
A. Abbara
Florent Krzakala
34
16
0
11 Feb 2020
Inference in Multi-Layer Networks with Matrix-Valued Unknowns
Parthe Pandit
Mojtaba Sahraee-Ardakan
S. Rangan
P. Schniter
A. Fletcher
23
6
0
26 Jan 2020
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
24
4
0
02 Jan 2020
Modelling the influence of data structure on learning in neural networks: the hidden manifold model
Sebastian Goldt
M. Mézard
Florent Krzakala
Lenka Zdeborová
BDL
26
51
0
25 Sep 2019
Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting
Marc Lelarge
Léo Miolane
14
28
0
08 Jul 2019
Understanding Phase Transitions via Mutual Information and MMSE
Galen Reeves
H. Pfister
11
7
0
03 Jul 2019
Fundamental Barriers to High-Dimensional Regression with Convex Penalties
Michael Celentano
Andrea Montanari
33
46
0
25 Mar 2019
The committee machine: Computational to statistical gaps in learning a two-layers neural network
Benjamin Aubin
Antoine Maillard
Jean Barbier
Florent Krzakala
N. Macris
Lenka Zdeborová
41
104
0
14 Jun 2018
Entropy and mutual information in models of deep neural networks
Marylou Gabrié
Andre Manoel
Clément Luneau
Jean Barbier
N. Macris
Florent Krzakala
Lenka Zdeborová
30
178
0
24 May 2018
A New Approach to Laplacian Solvers and Flow Problems
Patrick Rebeschini
S. Tatikonda
19
8
0
22 Nov 2016
1