Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.09564
Cited By
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
29 July 2017
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks"
50 / 156 papers shown
Title
Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia
Hao Su
27
19
0
19 Nov 2019
On Generalization Bounds of a Family of Recurrent Neural Networks
Minshuo Chen
Xingguo Li
T. Zhao
19
70
0
28 Oct 2019
Generalization Bounds for Neural Networks via Approximate Description Length
Amit Daniely
Elad Granot
28
20
0
13 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks
Spencer Frei
Yuan Cao
Quanquan Gu
ODL
9
31
0
07 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
How does topology influence gradient propagation and model performance of deep networks with DenseNet-type skip connections?
Kartikeya Bhardwaj
Guihong Li
R. Marculescu
38
1
0
02 Oct 2019
A Constructive Prediction of the Generalization Error Across Scales
Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
36
205
0
27 Sep 2019
PAC-Bayes with Backprop
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
21
49
0
19 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
On improving deep learning generalization with adaptive sparse connectivity
Shiwei Liu
Decebal Constantin Mocanu
Mykola Pechenizkiy
ODL
20
7
0
27 Jun 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
36
13
0
26 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
322
0
13 Jun 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
11
369
0
01 Jun 2019
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
21
46
0
31 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
17
383
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
14
236
0
28 May 2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
Pascal Germain
Benjamin Guedj
Franccois Laviolette
MQ
AI4CE
UQCV
28
54
0
24 May 2019
Fine-grained Optimization of Deep Neural Networks
Mete Ozay
ODL
14
1
0
22 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSL
DRL
30
116
0
28 Mar 2019
Generalization Bounds For Unsupervised and Semi-Supervised Learning With Autoencoders
Baruch Epstein
Ron Meir
SSL
DRL
AI4CE
10
16
0
04 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
147
0
02 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Generalization in Deep Networks: The Role of Distance from Initialization
Vaishnavh Nagarajan
J. Zico Kolter
ODL
4
95
0
07 Jan 2019
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
22
0
22 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi
Xichen Shi
Michael O'Connell
Rose Yu
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
27
271
0
19 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
14
765
0
12 Nov 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
29
130
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
23
245
0
12 Oct 2018
Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units
Yixi Xu
Tianlin Li
MQ
31
12
0
03 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Maximum-Entropy Fine-Grained Classification
Abhimanyu Dubey
O. Gupta
Ramesh Raskar
Nikhil Naik
28
156
0
16 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
18
62
0
11 Sep 2018
Generalization Error in Deep Learning
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
32
109
0
03 Aug 2018
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate
M. Belkin
Daniel J. Hsu
P. Mitra
AI4CE
30
256
0
13 Jun 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
27
78
0
13 Jun 2018
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel Environments
Anirudha Majumdar
M. Goldstein
Anoopkumar Sonar
23
18
0
11 Jun 2018
Minnorm training: an algorithm for training over-parameterized deep neural networks
Yamini Bansal
Madhu S. Advani
David D. Cox
Andrew M. Saxe
ODL
15
18
0
03 Jun 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
21
57
0
21 May 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
44
209
0
16 Apr 2018
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
25
79
0
15 Apr 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
26
630
0
14 Feb 2018
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent
Yifan Wu
Barnabás Póczós
Aarti Singh
MLT
27
8
0
13 Feb 2018
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
41
39
0
05 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
30
144
0
26 Dec 2017
Previous
1
2
3
4
Next