ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.06887
  4. Cited By
A Distributional Perspective on Reinforcement Learning

A Distributional Perspective on Reinforcement Learning

21 July 2017
Marc G. Bellemare
Will Dabney
Rémi Munos
    OffRL
ArXivPDFHTML

Papers citing "A Distributional Perspective on Reinforcement Learning"

24 / 274 papers shown
Title
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
24
126
0
08 Jun 2018
Equivalence Between Wasserstein and Value-Aware Loss for Model-based
  Reinforcement Learning
Equivalence Between Wasserstein and Value-Aware Loss for Model-based Reinforcement Learning
Kavosh Asadi
Evan Cater
Dipendra Kumar Misra
Michael L. Littman
OffRL
21
11
0
01 Jun 2018
Playing hard exploration games by watching YouTube
Playing hard exploration games by watching YouTube
Y. Aytar
Tobias Pfaff
David Budden
T. Paine
Ziyun Wang
Nando de Freitas
35
269
0
29 May 2018
Meta-Gradient Reinforcement Learning
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
53
324
0
24 May 2018
Reward Estimation for Variance Reduction in Deep Reinforcement Learning
Reward Estimation for Variance Reduction in Deep Reinforcement Learning
Joshua Romoff
Peter Henderson
Alexandre Piché
Vincent François-Lavet
Joelle Pineau
6
42
0
09 May 2018
Exploration by Distributional Reinforcement Learning
Exploration by Distributional Reinforcement Learning
Yunhao Tang
Shipra Agrawal
OOD
41
30
0
04 May 2018
Lipschitz Continuity in Model-based Reinforcement Learning
Lipschitz Continuity in Model-based Reinforcement Learning
Kavosh Asadi
Dipendra Kumar Misra
Michael L. Littman
KELM
43
150
0
19 Apr 2018
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
84
1,656
0
30 Mar 2018
Policy Search in Continuous Action Domains: an Overview
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
16
72
0
13 Mar 2018
Accelerated Methods for Deep Reinforcement Learning
Accelerated Methods for Deep Reinforcement Learning
Adam Stooke
Pieter Abbeel
OffRL
OnRL
25
133
0
07 Mar 2018
Distributed Prioritized Experience Replay
Distributed Prioritized Experience Replay
Dan Horgan
John Quan
David Budden
Gabriel Barth-Maron
Matteo Hessel
H. V. Hasselt
David Silver
89
731
0
02 Mar 2018
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and
  Request for Research
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
...
Joshua Tobin
Maciek Chociej
Peter Welinder
Vikash Kumar
Wojciech Zaremba
33
557
0
26 Feb 2018
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Vitchyr H. Pong
S. Gu
Murtaza Dalal
Sergey Levine
OffRL
66
238
0
25 Feb 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELM
LM&Ro
BDL
47
1,099
0
02 Jan 2018
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
  for Training Deep Neural Networks for Reinforcement Learning
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
686
0
18 Dec 2017
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
23
250
0
27 Nov 2017
Distributional Reinforcement Learning with Quantile Regression
Distributional Reinforcement Learning with Quantile Regression
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
21
749
0
27 Oct 2017
Self-supervised Deep Reinforcement Learning with Generalized Computation
  Graphs for Robot Navigation
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
G. Kahn
Adam R. Villaflor
Bosen Ding
Pieter Abbeel
Sergey Levine
SSL
31
287
0
29 Sep 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
35
544
0
18 Sep 2017
The Uncertainty Bellman Equation and Exploration
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
27
186
0
15 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
62
2,776
0
19 Aug 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
41
300
0
22 Mar 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,553
0
25 Jan 2016
Previous
123456