Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.04926
Cited By
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
16 July 2017
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical insights into the optimization landscape of over-parameterized shallow neural networks"
47 / 97 papers shown
Title
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
47
95
0
25 Jul 2020
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Valentin De Bortoli
Alain Durmus
Xavier Fontaine
Umut Simsekli
22
25
0
13 Jul 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Probably Approximately Correct Constrained Learning
Luiz F. O. Chamon
Alejandro Ribeiro
13
37
0
09 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
147
0
20 May 2020
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
6
79
0
07 May 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
26
13
0
23 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
25
19
0
31 Dec 2019
Convergence and sample complexity of gradient methods for the model-free linear quadratic regulator problem
Hesameddin Mohammadi
A. Zare
Mahdi Soltanolkotabi
M. Jovanović
32
121
0
26 Dec 2019
Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators
Reinhard Heckel
Mahdi Soltanolkotabi
DiffM
27
81
0
31 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
26
44
0
15 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
16
116
0
03 Oct 2019
Towards Scalable Koopman Operator Learning: Convergence Rates and A Distributed Learning Algorithm
Zhiyuan Liu
Guohui Ding
Lijun Chen
Enoch Yeung
12
3
0
30 Sep 2019
Generating Accurate Pseudo-labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via Hermite Polynomial Activations
Vishnu Suresh Lokhande
Songwong Tasneeyapant
Abhay Venkatesh
Sathya Ravi
Vikas Singh
11
29
0
12 Sep 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
34
31
0
28 Jun 2019
Greedy Shallow Networks: An Approach for Constructing and Training Neural Networks
Anton Dereventsov
Armenak Petrosyan
Clayton Webster
15
9
0
24 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order Tensor
Jean Kossaifi
Adrian Bulat
Georgios Tzimiropoulos
M. Pantic
14
67
0
04 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
28
351
0
27 Mar 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
35
962
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
16
93
0
24 Jan 2019
Analysis of a Two-Layer Neural Network via Displacement Convexity
Adel Javanmard
Marco Mondelli
Andrea Montanari
MLT
40
57
0
05 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
36
1,610
0
28 Dec 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
M. Tomizuka
ODL
21
1,122
0
09 Nov 2018
Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications
Deren Lei
Zichen Sun
Yijun Xiao
William Yang Wang
33
14
0
01 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao-quan Song
18
191
0
29 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark W. Schmidt
30
296
0
16 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
18
243
0
12 Oct 2018
Interpretable Convolutional Neural Networks via Feedforward Design
C.-C. Jay Kuo
Min Zhang
Siyang Li
Jiali Duan
Yueru Chen
30
155
0
05 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
33
1,251
0
04 Oct 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
22
131
0
14 Aug 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
30
141
0
11 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
16
61
0
04 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
31
723
0
24 May 2018
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition
Samet Oymak
Mahdi Soltanolkotabi
19
12
0
16 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
23
849
0
18 Apr 2018
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
35
39
0
05 Feb 2018
Fix your classifier: the marginal value of training the last weight layer
Elad Hoffer
Itay Hubara
Daniel Soudry
27
101
0
14 Jan 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
72
1,843
0
28 Dec 2017
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
Itay Safran
Ohad Shamir
29
261
0
24 Dec 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
37
276
0
27 Oct 2017
On Data-Driven Saak Transform
C.-C. Jay Kuo
Yueru Chen
AI4TS
13
93
0
11 Oct 2017
Benefits of depth in neural networks
Matus Telgarsky
142
602
0
14 Feb 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
Previous
1
2