Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.04926
Cited By
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
16 July 2017
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical insights into the optimization landscape of over-parameterized shallow neural networks"
50 / 97 papers shown
Title
Information-Theoretic Guarantees for Recovering Low-Rank Tensors from Symmetric Rank-One Measurements
Eren C. Kızıldağ
58
0
0
07 Feb 2025
A Metric Topology of Deep Learning for Data Classification
Jwo-Yuh Wu
L. Huang
Wen-Hsuan Li
Chun-Hung Liu
80
0
0
20 Jan 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
34
1
0
10 Jan 2025
Near-Optimal Solutions of Constrained Learning Problems
Juan Elenter
Luiz F. O. Chamon
Alejandro Ribeiro
26
5
0
18 Mar 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
44
3
0
12 Mar 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
40
0
0
08 Feb 2024
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Solving Large-scale Spatial Problems with Convolutional Neural Networks
Damian Owerko
Charilaos I. Kanatsoulis
Alejandro Ribeiro
22
2
0
14 Jun 2023
Resilient Constrained Learning
Ignacio Hounie
Alejandro Ribeiro
Luiz F. O. Chamon
21
9
0
04 Jun 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
19
4
0
20 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
38
13
0
11 May 2023
NTK-SAP: Improving neural network pruning by aligning training dynamics
Yite Wang
Dawei Li
Ruoyu Sun
34
19
0
06 Apr 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
30
10
0
03 Feb 2023
Implementation of Trained Factorization Machine Recommendation System on Quantum Annealer
Chen-Yu Liu
Hsin-Yu Wang
Pei-Yen Liao
Ching-Jui Lai
Min-hsiu Hsieh
LRM
21
14
0
24 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Z. Luo
26
10
0
21 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
25
41
0
19 Sep 2022
Intersection of Parallels as an Early Stopping Criterion
Ali Vardasbi
Maarten de Rijke
Mostafa Dehghani
MoMe
38
5
0
19 Aug 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
114
0
30 Jun 2022
Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay
Yuetian Luo
Anru R. Zhang
29
19
0
17 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
27
10
0
08 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
14
8
0
30 May 2022
Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks
Zhiwei Bai
Tao Luo
Z. Xu
Yaoyu Zhang
28
4
0
26 May 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
56
23
0
18 May 2022
Knowledge Distillation Meets Open-Set Semi-Supervised Learning
Jing Yang
Xiatian Zhu
Adrian Bulat
Brais Martínez
Georgios Tzimiropoulos
31
7
0
13 May 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
27
13
0
22 Mar 2022
A Classical-Quantum Convolutional Neural Network for Detecting Pneumonia from Chest Radiographs
V. Kulkarni
S. Pawale
A. Kharat
19
12
0
19 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis
Shuai Zhang
M. Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
SSL
MLT
41
22
0
21 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
21
1
0
25 Dec 2021
Recur, Attend or Convolve? On Whether Temporal Modeling Matters for Cross-Domain Robustness in Action Recognition
Sofia Broomé
Ernest Pokropek
Boyu Li
Hedvig Kjellström
16
7
0
22 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
36
16
0
05 Dec 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
36
6
0
15 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
28
13
0
12 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
Learning Transferable Parameters for Unsupervised Domain Adaptation
Zhongyi Han
Haoliang Sun
Yilong Yin
OOD
29
45
0
13 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
411
0
14 Jul 2021
Tensor Methods in Computer Vision and Deep Learning
Yannis Panagakis
Jean Kossaifi
Grigorios G. Chrysos
James Oldfield
M. Nicolaou
Anima Anandkumar
S. Zafeiriou
24
119
0
07 Jul 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Understanding Overparameterization in Generative Adversarial Networks
Yogesh Balaji
M. Sajedi
N. Kalibhat
Mucong Ding
Dominik Stöger
Mahdi Soltanolkotabi
S. Feizi
AI4CE
20
21
0
12 Apr 2021
Landscape analysis for shallow neural networks: complete classification of critical points for affine target functions
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
24
10
0
19 Mar 2021
Recent Advances on Neural Network Pruning at Initialization
Huan Wang
Can Qin
Yue Bai
Yulun Zhang
Yun Fu
CVBM
33
64
0
11 Mar 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
20
17
0
15 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
38
355
0
17 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
21
44
0
27 Oct 2020
Computational Separation Between Convolutional and Fully-Connected Networks
Eran Malach
Shai Shalev-Shwartz
19
26
0
03 Oct 2020
Understanding Self-supervised Learning with Dual Deep Networks
Yuandong Tian
Lantao Yu
Xinlei Chen
Surya Ganguli
SSL
13
78
0
01 Oct 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
14
109
0
10 Aug 2020
1
2
Next