ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08566
  4. Cited By
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

26 June 2017
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
ArXivPDFHTML

Papers citing "SchNet: A continuous-filter convolutional neural network for modeling quantum interactions"

25 / 225 papers shown
Title
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
16
642
0
07 Nov 2019
Generating valid Euclidean distance matrices
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
21
56
0
07 Oct 2019
A Generative Model for Molecular Distance Geometry
A Generative Model for Molecular Distance Geometry
G. Simm
José Miguel Hernández-Lobato
GAN
24
107
0
25 Sep 2019
Deformable Filter Convolution for Point Cloud Reasoning
Deformable Filter Convolution for Point Cloud Reasoning
Yuwen Xiong
Mengye Ren
Renjie Liao
K. Wong
R. Urtasun
3DPC
34
17
0
30 Jul 2019
Molecular Property Prediction: A Multilevel Quantum Interactions
  Modeling Perspective
Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective
Chengqiang Lu
Qi Liu
Chao Wang
Zhenya Huang
Peize Lin
Lixin He
AI4CE
22
191
0
25 Jun 2019
Unifying machine learning and quantum chemistry -- a deep neural network
  for molecular wavefunctions
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
382
0
24 Jun 2019
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
30
421
0
06 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
35
201
0
02 Jun 2019
Software and application patterns for explanation methods
Software and application patterns for explanation methods
Maximilian Alber
33
11
0
09 Apr 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
26
1
0
24 Jan 2019
Machine Learning for Molecular Dynamics on Long Timescales
Machine Learning for Molecular Dynamics on Long Timescales
Frank Noé
AI4CE
15
32
0
18 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Active Learning of Uniformly Accurate Inter-atomic Potentials for
  Materials Simulation
Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation
Linfeng Zhang
De-Ye Lin
Han Wang
R. Car
E. Weinan
9
326
0
28 Oct 2018
Generating equilibrium molecules with deep neural networks
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
19
38
0
26 Oct 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
97
1,606
0
04 Oct 2018
Quantum-chemical insights from interpretable atomistic neural networks
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
33
31
0
27 Jun 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
84
2,124
0
22 Jun 2018
Neural Message Passing with Edge Updates for Predicting Properties of
  Molecules and Materials
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
Peter Bjørn Jørgensen
K. Jacobsen
Mikkel N. Schmidt
30
82
0
08 Jun 2018
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Michael Eickenberg
Georgios Exarchakis
M. Hirn
S. Mallat
L. Thiry
22
69
0
01 May 2018
Visualizing Convolutional Neural Network Protein-Ligand Scoring
Visualizing Convolutional Neural Network Protein-Ligand Scoring
Joshua E. Hochuli
Alec Helbling
Tamar Skaist
Matthew Ragoza
D. Koes
FAtt
16
65
0
06 Mar 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
39
941
0
22 Feb 2018
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
36
437
0
24 Nov 2017
Ligand Pose Optimization with Atomic Grid-Based Convolutional Neural
  Networks
Ligand Pose Optimization with Atomic Grid-Based Convolutional Neural Networks
Matthew Ragoza
Lillian Turner
D. Koes
32
16
0
20 Oct 2017
A Unifying View of Explicit and Implicit Feature Maps of Graph Kernels
A Unifying View of Explicit and Implicit Feature Maps of Graph Kernels
Nils M. Kriege
Marion Neumann
Christopher Morris
Kristian Kersting
Petra Mutzel
31
22
0
02 Mar 2017
Previous
12345