ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08566
  4. Cited By
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

26 June 2017
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
ArXivPDFHTML

Papers citing "SchNet: A continuous-filter convolutional neural network for modeling quantum interactions"

50 / 225 papers shown
Title
Investigating how ReLU-networks encode symmetries
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
29
6
0
26 May 2023
A Score-Based Model for Learning Neural Wavefunctions
A Score-Based Model for Learning Neural Wavefunctions
Xuan Zhang
Shenglong Xu
Shuiwang Ji
DiffM
31
1
0
25 May 2023
HybridNet: Dual-Branch Fusion of Geometrical and Topological Views for
  VLSI Congestion Prediction
HybridNet: Dual-Branch Fusion of Geometrical and Topological Views for VLSI Congestion Prediction
Yuxiang Zhao
Zhuomin Chai
Yibo Lin
Runsheng Wang
Ru Huang
13
4
0
07 May 2023
An Exploration of Conditioning Methods in Graph Neural Networks
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
45
3
0
03 May 2023
3D Molecular Geometry Analysis with 2D Graphs
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
27
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
An Equivariant Generative Framework for Molecular Graph-Structure
  Co-Design
An Equivariant Generative Framework for Molecular Graph-Structure Co-Design
Zaixin Zhang
Qi Liu
Cheekong Lee
Chang-Yu Hsieh
Enhong Chen
19
18
0
12 Apr 2023
SELFormer: Molecular Representation Learning via SELFIES Language Models
SELFormer: Molecular Representation Learning via SELFIES Language Models
Atakan Yüksel
Erva Ulusoy
Atabey Ünlü
Tunca Dogan
27
55
0
10 Apr 2023
Learning Energy-Based Representations of Quantum Many-Body States
Learning Energy-Based Representations of Quantum Many-Body States
Abhijith Jayakumar
Marc Vuffray
A. Lokhov
AI4CE
32
3
0
08 Apr 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
19
5
0
31 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
27
21
0
03 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
28
11
0
27 Feb 2023
GraphVF: Controllable Protein-Specific 3D Molecule Generation with
  Variational Flow
GraphVF: Controllable Protein-Specific 3D Molecule Generation with Variational Flow
Fangce Sun
Zhihao Zhan
Hongyu Guo
Ming Zhang
Jian Tang
26
6
0
23 Feb 2023
Complete Neural Networks for Complete Euclidean Graphs
Complete Neural Networks for Complete Euclidean Graphs
Snir Hordan
Tal Amir
S. Gortler
Nadav Dym
3DPC
31
5
0
31 Jan 2023
Graph Scattering beyond Wavelet Shackles
Graph Scattering beyond Wavelet Shackles
Christian Koke
Gitta Kutyniok
24
4
0
26 Jan 2023
Dynamic Molecular Graph-based Implementation for Biophysical Properties
  Prediction
Dynamic Molecular Graph-based Implementation for Biophysical Properties Prediction
C. Knutson
G. Panapitiya
R. Varikoti
Neeraj Kumar
AI4CE
31
0
0
20 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
36
6
0
12 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
25
59
0
11 Dec 2022
Integration of Pre-trained Protein Language Models into Geometric Deep
  Learning Networks
Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks
Fang Wu
Yujun Tao
Dragomir R. Radev
Jinbo Xu
Stan Z. Li
AI4CE
33
32
0
07 Dec 2022
Convolution, aggregation and attention based deep neural networks for
  accelerating simulations in mechanics
Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
Saurabh Deshpande
Raúl I. Sosa
Stéphane P. A. Bordas
J. Lengiewicz
AI4CE
36
18
0
01 Dec 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
35
44
0
29 Nov 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
37
6
0
29 Nov 2022
Supervised Pretraining for Molecular Force Fields and Properties
  Prediction
Supervised Pretraining for Molecular Force Fields and Properties Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
28
8
0
23 Nov 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
ParticleGrid: Enabling Deep Learning using 3D Representation of
  Materials
ParticleGrid: Enabling Deep Learning using 3D Representation of Materials
Shehtab Zaman
E. Ferguson
Cécile Pereira
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
DiffM
AI4CE
26
2
0
15 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
48
23
0
15 Nov 2022
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph
  Neural Networks
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks
Ryien Hosseini
F. Simini
Austin R. Clyde
A. Ramanathan
21
5
0
04 Nov 2022
Materials Property Prediction with Uncertainty Quantification: A
  Benchmark Study
Materials Property Prediction with Uncertainty Quantification: A Benchmark Study
Daniel Varivoda
Rongzhi Dong
Sadman Sadeed Omee
Jianjun Hu
AI4CE
28
20
0
04 Nov 2022
A 3D-Shape Similarity-based Contrastive Approach to Molecular
  Representation Learning
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
30
2
0
03 Nov 2022
A Continuous Convolutional Trainable Filter for Modelling Unstructured
  Data
A Continuous Convolutional Trainable Filter for Modelling Unstructured Data
Dario Coscia
L. Meneghetti
N. Demo
G. Stabile
G. Rozza
16
8
0
24 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
39
85
0
18 Oct 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property
  Prediction
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
23
7
0
18 Oct 2022
Injecting Domain Knowledge from Empirical Interatomic Potentials to
  Neural Networks for Predicting Material Properties
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
46
7
0
14 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
32
138
0
13 Oct 2022
S4ND: Modeling Images and Videos as Multidimensional Signals Using State
  Spaces
S4ND: Modeling Images and Videos as Multidimensional Signals Using State Spaces
Eric N. D. Nguyen
Karan Goel
Albert Gu
Gordon W. Downs
Preey Shah
Tri Dao
S. Baccus
Christopher Ré
VLM
22
39
0
12 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
46
64
0
09 Oct 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
142
412
0
04 Oct 2022
Learned Force Fields Are Ready For Ground State Catalyst Discovery
Learned Force Fields Are Ready For Ground State Catalyst Discovery
Michael Schaarschmidt
M. Rivière
A. Ganose
J. Spencer
Alex Gaunt
J. Kirkpatrick
Simon Axelrod
Peter W. Battaglia
Jonathan Godwin
29
10
0
26 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Exact conservation laws for neural network integrators of dynamical
  systems
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
41
12
0
23 Sep 2022
Interpreting the Mechanism of Synergism for Drug Combinations Using
  Attention-Based Hierarchical Graph Pooling
Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling
Zehao Dong
Heming Zhang
Yixin Chen
Philip R. O. Payne
Fuhai Li
GNN
46
16
0
19 Sep 2022
MDM: Molecular Diffusion Model for 3D Molecule Generation
MDM: Molecular Diffusion Model for 3D Molecule Generation
Lei Huang
Hengtong Zhang
Tingyang Xu
Ka-Chun Wong
DiffM
23
81
0
13 Sep 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
57
67
0
14 Jul 2022
Cluster Generation via Deep Energy-Based Model
Cluster Generation via Deep Energy-Based Model
A. Y. Artsukevich
S. Lepeshkin
29
0
0
17 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
36
174
0
17 Jun 2022
Approximate Equivariance SO(3) Needlet Convolution
Approximate Equivariance SO(3) Needlet Convolution
Kai Yi
Jialin Chen
Yu Guang Wang
Bingxin Zhou
Pietro Lio
Yanan Fan
J. Hamann
18
4
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
47
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
47
442
0
15 Jun 2022
Towards a General Purpose CNN for Long Range Dependencies in $N$D
Towards a General Purpose CNN for Long Range Dependencies in NNND
David W. Romero
David M. Knigge
Albert Gu
Erik J. Bekkers
E. Gavves
Jakub M. Tomczak
Mark Hoogendoorn
24
19
0
07 Jun 2022
Previous
12345
Next