Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08498
Cited By
v1
v2 (latest)
Spectrally-normalized margin bounds for neural networks
26 June 2017
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spectrally-normalized margin bounds for neural networks"
50 / 811 papers shown
Title
Lipschitz Bounded Equilibrium Networks
Max Revay
Ruigang Wang
I. Manchester
62
76
0
05 Oct 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
176
272
0
27 Sep 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
115
43
0
27 Sep 2020
Enhancing Mixup-based Semi-Supervised Learning with Explicit Lipschitz Regularization
P. Gyawali
S. Ghimire
Linwei Wang
AAML
57
7
0
23 Sep 2020
Complexity Measures for Neural Networks with General Activation Functions Using Path-based Norms
Zhong Li
Chao Ma
Lei Wu
63
24
0
14 Sep 2020
How Good is your Explanation? Algorithmic Stability Measures to Assess the Quality of Explanations for Deep Neural Networks
Thomas Fel
David Vigouroux
Rémi Cadène
Thomas Serre
XAI
FAtt
75
31
0
07 Sep 2020
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements
Zinan Lin
Vyas Sekar
Giulia Fanti
52
51
0
06 Sep 2020
Extreme Memorization via Scale of Initialization
Harsh Mehta
Ashok Cutkosky
Behnam Neyshabur
60
20
0
31 Aug 2020
What is being transferred in transfer learning?
Behnam Neyshabur
Hanie Sedghi
Chiyuan Zhang
143
530
0
26 Aug 2020
Analytical bounds on the local Lipschitz constants of affine-ReLU functions
Trevor Avant
K. Morgansen
59
5
0
14 Aug 2020
Neural Complexity Measures
Yoonho Lee
Juho Lee
Sung Ju Hwang
Eunho Yang
Seungjin Choi
85
9
0
07 Aug 2020
Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network Based Vector-to-Vector Regression
Jun Qi
Jun Du
Sabato Marco Siniscalchi
Xiaoli Ma
Chin-Hui Lee
111
42
0
04 Aug 2020
Making Coherence Out of Nothing At All: Measuring the Evolution of Gradient Alignment
S. Chatterjee
Piotr Zielinski
54
8
0
03 Aug 2020
Implicit Regularization via Neural Feature Alignment
A. Baratin
Thomas George
César Laurent
R. Devon Hjelm
Guillaume Lajoie
Pascal Vincent
Simon Lacoste-Julien
59
6
0
03 Aug 2020
Generalization Comparison of Deep Neural Networks via Output Sensitivity
Mahsa Forouzesh
Farnood Salehi
Patrick Thiran
44
8
0
30 Jul 2020
Interpretabilité des modèles : état des lieux des méthodes et application à lássurance
Dimitri Delcaillau
A. Ly
Franck Vermet
Alizé Papp
39
1
0
25 Jul 2020
Hierarchical Verification for Adversarial Robustness
Cong Han Lim
R. Urtasun
Ersin Yumer
AAML
36
5
0
23 Jul 2020
Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms
Fengxiang He
Bohan Wang
Dacheng Tao
FedML
55
18
0
18 Jul 2020
From deep to Shallow: Equivalent Forms of Deep Networks in Reproducing Kernel Krein Space and Indefinite Support Vector Machines
A. Shilton
Sunil Gupta
Santu Rana
Svetha Venkatesh
31
0
0
15 Jul 2020
Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics
Taiji Suzuki
63
21
0
11 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
72
42
0
09 Jul 2020
Robust Learning with Frequency Domain Regularization
Weiyu Guo
Yidong Ouyang
AAML
34
2
0
07 Jul 2020
DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths
Yanwei Fu
Chen Liu
Donghao Li
Xinwei Sun
Jinshan Zeng
Yuan Yao
34
9
0
04 Jul 2020
Self-supervised Neural Architecture Search
Sapir Kaplan
Raja Giryes
SSL
67
12
0
03 Jul 2020
Efficient Proximal Mapping of the 1-path-norm of Shallow Networks
Fabian Latorre
Paul Rolland
Nadav Hallak
Volkan Cevher
AAML
65
4
0
02 Jul 2020
A Revision of Neural Tangent Kernel-based Approaches for Neural Networks
Kyungsu Kim
A. Lozano
Eunho Yang
AAML
83
0
0
02 Jul 2020
Information Theoretic Lower Bounds for Feed-Forward Fully-Connected Deep Networks
Xiaochen Yang
Jean Honorio
134
0
0
01 Jul 2020
The Restricted Isometry of ReLU Networks: Generalization through Norm Concentration
Alex Goessmann
Gitta Kutyniok
28
3
0
01 Jul 2020
Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization
Sang Michael Xie
Tengyu Ma
Percy Liang
121
15
0
29 Jun 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
77
53
0
26 Jun 2020
Relative Deviation Margin Bounds
Corinna Cortes
M. Mohri
A. Suresh
84
14
0
26 Jun 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
72
63
0
25 Jun 2020
Understanding Deep Architectures with Reasoning Layer
Xinshi Chen
Yufei Zhang
C. Reisinger
Le Song
AI4CE
127
7
0
24 Jun 2020
Gradient descent follows the regularization path for general losses
Ziwei Ji
Miroslav Dudík
Robert Schapire
Matus Telgarsky
AI4CE
FaML
167
62
0
19 Jun 2020
Model-Aware Regularization For Learning Approaches To Inverse Problems
Jaweria Amjad
Zhaoyang Lyu
M. Rodrigues
MedIm
18
0
0
18 Jun 2020
What Do Neural Networks Learn When Trained With Random Labels?
Hartmut Maennel
Ibrahim Alabdulmohsin
Ilya O. Tolstikhin
R. Baldock
Olivier Bousquet
Sylvain Gelly
Daniel Keysers
FedML
165
90
0
18 Jun 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
53
5
0
17 Jun 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
98
167
0
16 Jun 2020
On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory
Alexandre Araujo
Benjamin Négrevergne
Y. Chevaleyre
Jamal Atif
42
0
0
15 Jun 2020
Markov-Lipschitz Deep Learning
Stan Z. Li
Zelin Zhang
Lirong Wu
75
16
0
15 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
76
364
0
13 Jun 2020
Minimax Estimation of Conditional Moment Models
Nishanth Dikkala
Greg Lewis
Lester W. Mackey
Vasilis Syrgkanis
210
103
0
12 Jun 2020
Asymptotic Singular Value Distribution of Linear Convolutional Layers
Xinping Yi
28
3
0
12 Jun 2020
Tangent Space Sensitivity and Distribution of Linear Regions in ReLU Networks
Balint Daroczy
AAML
10
0
0
11 Jun 2020
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
70
171
0
11 Jun 2020
Towards Certified Robustness of Distance Metric Learning
Xiaochen Yang
Yiwen Guo
Mingzhi Dong
Jing-Hao Xue
OOD
52
0
0
10 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
96
30
0
10 Jun 2020
Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing
Vishaal Krishnan
Abed AlRahman Al Makdah
Fabio Pasqualetti
OOD
AAML
66
23
0
05 Jun 2020
Network size and weights size for memorization with two-layers neural networks
Sébastien Bubeck
Ronen Eldan
Y. Lee
Dan Mikulincer
85
33
0
04 Jun 2020
Neural Networks with Small Weights and Depth-Separation Barriers
Gal Vardi
Ohad Shamir
86
18
0
31 May 2020
Previous
1
2
3
...
10
11
12
...
15
16
17
Next