Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08498
Cited By
v1
v2 (latest)
Spectrally-normalized margin bounds for neural networks
26 June 2017
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spectrally-normalized margin bounds for neural networks"
50 / 811 papers shown
Title
Orthogonal Statistical Learning
Dylan J. Foster
Vasilis Syrgkanis
154
174
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
234
974
0
24 Jan 2019
Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples
Kamil Nar
Orhan Ocal
S. Shankar Sastry
Kannan Ramchandran
AAML
90
54
0
24 Jan 2019
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks
Charles H. Martin
Michael W. Mahoney
83
56
0
24 Jan 2019
Understanding Geometry of Encoder-Decoder CNNs
J. C. Ye
Woon Kyoung Sung
3DV
AI4CE
88
74
0
22 Jan 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
137
521
0
19 Jan 2019
Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks using PAC-Bayesian Analysis
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
84
77
0
15 Jan 2019
Tightening Mutual Information Based Bounds on Generalization Error
Yuheng Bu
Shaofeng Zou
Venugopal V. Veeravalli
66
177
0
15 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
193
611
0
01 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
120
38
0
28 Dec 2018
On Computation and Generalization of GANs with Spectrum Control
Haoming Jiang
Zhehui Chen
Minshuo Chen
Feng Liu
Dingding Wang
T. Zhao
69
6
0
28 Dec 2018
Improving Generalization of Deep Neural Networks by Leveraging Margin Distribution
Shen-Huan Lyu
Lu Wang
Zhi Zhou
41
11
0
27 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
73
177
0
25 Dec 2018
Learning finite-dimensional coding schemes with nonlinear reconstruction maps
Jaeho Lee
Maxim Raginsky
56
9
0
23 Dec 2018
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
135
22
0
22 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
254
448
0
21 Nov 2018
Analytic Network Learning
Kar-Ann Toh
44
9
0
20 Nov 2018
Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi
Xichen Shi
Michael O'Connell
Rose Yu
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
115
276
0
19 Nov 2018
Generalizable Adversarial Training via Spectral Normalization
Farzan Farnia
Jesse M. Zhang
David Tse
OOD
AAML
83
140
0
19 Nov 2018
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
96
325
0
13 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
72
68
0
13 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
223
775
0
12 Nov 2018
Sample Compression, Support Vectors, and Generalization in Deep Learning
Christopher Snyder
S. Vishwanath
MLT
75
5
0
05 Nov 2018
Minimax Estimation of Neural Net Distance
Kaiyi Ji
Yingbin Liang
GAN
39
9
0
02 Nov 2018
A Bayesian Perspective of Convolutional Neural Networks through a Deconvolutional Generative Model
Yujia Wang
Nhat Ho
David J. Miller
Anima Anandkumar
Michael I. Jordan
Richard G. Baraniuk
BDL
GAN
96
8
0
01 Nov 2018
Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation
Matthew O'Kelly
Aman Sinha
Hongseok Namkoong
John C. Duchi
Russ Tedrake
121
217
0
31 Oct 2018
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
105
261
0
29 Oct 2018
RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications
Huan Zhang
Pengchuan Zhang
Cho-Jui Hsieh
AAML
68
63
0
28 Oct 2018
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
68
0
25 Oct 2018
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
98
154
0
23 Oct 2018
Adversarial Risk Bounds via Function Transformation
Justin Khim
Po-Ling Loh
AAML
90
50
0
22 Oct 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
92
132
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
268
245
0
12 Oct 2018
Rethinking Breiman's Dilemma in Neural Networks: Phase Transitions of Margin Dynamics
Weizhi Zhu
Yifei Huang
Yuan Yao
AI4CE
OOD
20
1
0
08 Oct 2018
Detecting Memorization in ReLU Networks
Edo Collins
Siavash Bigdeli
Sabine Süsstrunk
73
4
0
08 Oct 2018
Generalized No Free Lunch Theorem for Adversarial Robustness
Elvis Dohmatob
102
28
0
08 Oct 2018
Gradient descent aligns the layers of deep linear networks
Ziwei Ji
Matus Telgarsky
123
257
0
04 Oct 2018
Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units
Yixi Xu
Tianlin Li
MQ
79
12
0
03 Oct 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
102
49
0
02 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
134
201
0
02 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
82
15
0
30 Sep 2018
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
95
199
0
28 Sep 2018
An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Kyle Lampinen
Surya Ganguli
OOD
92
131
0
27 Sep 2018
Capacity Control of ReLU Neural Networks by Basis-path Norm
Shuxin Zheng
Qi Meng
Huishuai Zhang
Wei-neng Chen
Nenghai Yu
Tie-Yan Liu
67
23
0
19 Sep 2018
Maximum-Entropy Fine-Grained Classification
Abhimanyu Dubey
O. Gupta
Ramesh Raskar
Nikhil Naik
93
157
0
16 Sep 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
82
59
0
10 Sep 2018
Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations
Julius Berner
Philipp Grohs
Arnulf Jentzen
118
183
0
09 Sep 2018
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations
Samet Oymak
78
43
0
09 Sep 2018
Lipschitz Networks and Distributional Robustness
Zac Cranko
Simon Kornblith
Zhan Shi
Richard Nock
OOD
63
11
0
04 Sep 2018
Lipschitz regularized Deep Neural Networks generalize and are adversarially robust
Chris Finlay
Jeff Calder
Bilal Abbasi
Adam M. Oberman
95
55
0
28 Aug 2018
Previous
1
2
3
...
14
15
16
17
Next