Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08498
Cited By
Spectrally-normalized margin bounds for neural networks
26 June 2017
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spectrally-normalized margin bounds for neural networks"
50 / 803 papers shown
Title
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
29
37
0
28 Dec 2018
On Computation and Generalization of GANs with Spectrum Control
Haoming Jiang
Zhehui Chen
Minshuo Chen
Feng Liu
Dingding Wang
T. Zhao
16
6
0
28 Dec 2018
Improving Generalization of Deep Neural Networks by Leveraging Margin Distribution
Shen-Huan Lyu
Lu Wang
Zhi-Hua Zhou
22
11
0
27 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
6
176
0
25 Dec 2018
Learning finite-dimensional coding schemes with nonlinear reconstruction maps
Jaeho Lee
Maxim Raginsky
23
9
0
23 Dec 2018
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
22
0
22 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Analytic Network Learning
Kar-Ann Toh
22
9
0
20 Nov 2018
Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi
Xichen Shi
Michael O'Connell
Rose Yu
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
27
271
0
19 Nov 2018
Generalizable Adversarial Training via Spectral Normalization
Farzan Farnia
Jesse M. Zhang
David Tse
OOD
AAML
37
137
0
19 Nov 2018
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
21
317
0
13 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
9
765
0
12 Nov 2018
Sample Compression, Support Vectors, and Generalization in Deep Learning
Christopher Snyder
S. Vishwanath
MLT
16
5
0
05 Nov 2018
Minimax Estimation of Neural Net Distance
Kaiyi Ji
Yingbin Liang
GAN
19
8
0
02 Nov 2018
A Bayesian Perspective of Convolutional Neural Networks through a Deconvolutional Generative Model
Yujia Wang
Nhat Ho
David J. Miller
Anima Anandkumar
Michael I. Jordan
Richard G. Baraniuk
BDL
GAN
29
8
0
01 Nov 2018
Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation
Matthew O'Kelly
Aman Sinha
Hongseok Namkoong
John C. Duchi
Russ Tedrake
6
212
0
31 Oct 2018
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
19
257
0
29 Oct 2018
RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications
Huan Zhang
Pengchuan Zhang
Cho-Jui Hsieh
AAML
27
63
0
28 Oct 2018
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
30
68
0
25 Oct 2018
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
17
151
0
23 Oct 2018
Adversarial Risk Bounds via Function Transformation
Justin Khim
Po-Ling Loh
AAML
22
49
0
22 Oct 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
29
130
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
23
245
0
12 Oct 2018
Rethinking Breiman's Dilemma in Neural Networks: Phase Transitions of Margin Dynamics
Weizhi Zhu
Yifei Huang
Yuan Yao
AI4CE
OOD
11
1
0
08 Oct 2018
Detecting Memorization in ReLU Networks
Edo Collins
Siavash Bigdeli
Sabine Süsstrunk
36
4
0
08 Oct 2018
Generalized No Free Lunch Theorem for Adversarial Robustness
Elvis Dohmatob
11
28
0
08 Oct 2018
Gradient descent aligns the layers of deep linear networks
Ziwei Ji
Matus Telgarsky
30
248
0
04 Oct 2018
Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units
Yixi Xu
Tianlin Li
MQ
31
12
0
03 Oct 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
30
49
0
02 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
38
191
0
02 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
24
198
0
28 Sep 2018
An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Kyle Lampinen
Surya Ganguli
OOD
28
127
0
27 Sep 2018
Capacity Control of ReLU Neural Networks by Basis-path Norm
Shuxin Zheng
Qi Meng
Huishuai Zhang
Wei-neng Chen
Nenghai Yu
Tie-Yan Liu
24
23
0
19 Sep 2018
Maximum-Entropy Fine-Grained Classification
Abhimanyu Dubey
O. Gupta
Ramesh Raskar
Nikhil Naik
19
156
0
16 Sep 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
27
59
0
10 Sep 2018
Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations
Julius Berner
Philipp Grohs
Arnulf Jentzen
14
181
0
09 Sep 2018
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations
Samet Oymak
16
43
0
09 Sep 2018
Lipschitz Networks and Distributional Robustness
Zac Cranko
Simon Kornblith
Zhan Shi
Richard Nock
OOD
16
11
0
04 Sep 2018
Lipschitz regularized Deep Neural Networks generalize and are adversarially robust
Chris Finlay
Jeff Calder
Bilal Abbasi
Adam M. Oberman
24
55
0
28 Aug 2018
Mean Field Analysis of Neural Networks: A Central Limit Theorem
Justin A. Sirignano
K. Spiliopoulos
MLT
35
193
0
28 Aug 2018
Spectral Pruning: Compressing Deep Neural Networks via Spectral Analysis and its Generalization Error
Taiji Suzuki
Hiroshi Abe
Tomoya Murata
Shingo Horiuchi
Kotaro Ito
Tokuma Wachi
So Hirai
Masatoshi Yukishima
Tomoaki Nishimura
MLT
19
10
0
26 Aug 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
34
650
0
03 Aug 2018
Generalization Error in Deep Learning
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
32
109
0
03 Aug 2018
A Surprising Linear Relationship Predicts Test Performance in Deep Networks
Q. Liao
Brando Miranda
Andrzej Banburski
Jack Hidary
T. Poggio
16
32
0
25 Jul 2018
Learning Deep Hidden Nonlinear Dynamics from Aggregate Data
Yisen Wang
Bo Dai
Lingkai Kong
S. Erfani
James Bailey
H. Zha
DiffM
25
10
0
22 Jul 2018
Theory IIIb: Generalization in Deep Networks
T. Poggio
Q. Liao
Brando Miranda
Andrzej Banburski
Xavier Boix
Jack Hidary
ODL
AI4CE
27
26
0
29 Jun 2018
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate
M. Belkin
Daniel J. Hsu
P. Mitra
AI4CE
28
256
0
13 Jun 2018
Previous
1
2
3
...
14
15
16
17
Next