Relative Deviation Margin Bounds

Abstract
We present a series of new and more favorable margin-based learning guarantees that depend on the empirical margin loss of a predictor. We give two types of learning bounds, both distribution-dependent and valid for general families, in terms of the Rademacher complexity or the empirical covering number of the hypothesis set used. Furthermore, using our relative deviation margin bounds, we derive distribution-dependent generalization bounds for unbounded loss functions under the assumption of a finite moment. We also briefly highlight several applications of these bounds and discuss their connection with existing results.
View on arXivComments on this paper