ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.05394
  4. Cited By
A Closer Look at Memorization in Deep Networks

A Closer Look at Memorization in Deep Networks

16 June 2017
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
Maxinder S. Kanwal
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
    TDI
ArXivPDFHTML

Papers citing "A Closer Look at Memorization in Deep Networks"

50 / 389 papers shown
Title
Antipodes of Label Differential Privacy: PATE and ALIBI
Antipodes of Label Differential Privacy: PATE and ALIBI
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
16
62
0
07 Jun 2021
On Memorization in Probabilistic Deep Generative Models
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
25
59
0
06 Jun 2021
A Little Robustness Goes a Long Way: Leveraging Robust Features for
  Targeted Transfer Attacks
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
31
43
0
03 Jun 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
181
53
0
19 May 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
21
20
0
07 May 2021
Schematic Memory Persistence and Transience for Efficient and Robust
  Continual Learning
Schematic Memory Persistence and Transience for Efficient and Robust Continual Learning
Yuyang Gao
Giorgio Ascoli
Liang Zhao
27
4
0
05 May 2021
Estimating the electrical power output of industrial devices with
  end-to-end time-series classification in the presence of label noise
Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise
Andrea Castellani
Sebastian Schmitt
Barbara Hammer
NoLa
35
18
0
01 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
30
30
0
01 May 2021
Distill on the Go: Online knowledge distillation in self-supervised
  learning
Distill on the Go: Online knowledge distillation in self-supervised learning
Prashant Shivaram Bhat
Elahe Arani
Bahram Zonooz
SSL
22
28
0
20 Apr 2021
Learning from Noisy Labels for Entity-Centric Information Extraction
Learning from Noisy Labels for Entity-Centric Information Extraction
Wenxuan Zhou
Muhao Chen
NoLa
12
65
0
17 Apr 2021
Noisy-Labeled NER with Confidence Estimation
Noisy-Labeled NER with Confidence Estimation
Kun Liu
Yao Fu
Chuanqi Tan
Mosha Chen
Ningyu Zhang
Songfang Huang
Sheng Gao
NoLa
35
60
0
09 Apr 2021
Regularizing Generative Adversarial Networks under Limited Data
Regularizing Generative Adversarial Networks under Limited Data
Hung-Yu Tseng
Lu Jiang
Ce Liu
Ming-Hsuan Yang
Weilong Yang
GAN
35
142
0
07 Apr 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
32
6
0
01 Apr 2021
Collaborative Label Correction via Entropy Thresholding
Collaborative Label Correction via Entropy Thresholding
Hao Wu
Jiangchao Yao
Jiajie Wang
Yinru Chen
Ya Zhang
Yanfeng Wang
NoLa
22
4
0
31 Mar 2021
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose
  Estimation
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation
Chen Li
G. Lee
OOD
17
81
0
27 Mar 2021
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Yazhou Yao
Zeren Sun
Chuanyi Zhang
Fumin Shen
Qi Wu
Jian Zhang
Zhenmin Tang
NoLa
33
133
0
24 Mar 2021
The Low-Rank Simplicity Bias in Deep Networks
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
27
109
0
18 Mar 2021
Neural Networks and Denotation
Neural Networks and Denotation
E. Allen
22
0
0
15 Mar 2021
Intraclass clustering: an implicit learning ability that regularizes
  DNNs
Intraclass clustering: an implicit learning ability that regularizes DNNs
Simon Carbonnelle
Christophe De Vleeschouwer
60
8
0
11 Mar 2021
Reframing Neural Networks: Deep Structure in Overcomplete
  Representations
Reframing Neural Networks: Deep Structure in Overcomplete Representations
Calvin Murdock
George Cazenavette
Simon Lucey
BDL
41
4
0
10 Mar 2021
Follow Your Nose -- Which Code Smells are Worth Chasing?
Follow Your Nose -- Which Code Smells are Worth Chasing?
Idan Amit
Nili Ben Ezra
D. Feitelson
14
5
0
02 Mar 2021
Computing the Information Content of Trained Neural Networks
Computing the Information Content of Trained Neural Networks
Jeremy Bernstein
Yisong Yue
27
4
0
01 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
27
3
0
01 Mar 2021
FINE Samples for Learning with Noisy Labels
FINE Samples for Learning with Noisy Labels
Taehyeon Kim
Jongwoo Ko
Sangwook Cho
J. Choi
Se-Young Yun
NoLa
38
103
0
23 Feb 2021
Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
  Adaptation
Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain Adaptation
Weijie Chen
Luojun Lin
Shicai Yang
Di Xie
Shiliang Pu
Yueting Zhuang
Wenqi Ren
NoLa
SSL
30
57
0
23 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
210
81
0
16 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
133
121
0
04 Feb 2021
Beyond Class-Conditional Assumption: A Primary Attempt to Combat
  Instance-Dependent Label Noise
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
40
123
0
10 Dec 2020
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
Hongxin Wei
Lei Feng
R. Wang
Bo An
NoLa
27
6
0
09 Dec 2020
A Topological Filter for Learning with Label Noise
A Topological Filter for Learning with Label Noise
Pengxiang Wu
Songzhu Zheng
Mayank Goswami
Dimitris N. Metaxas
Chao Chen
NoLa
30
112
0
09 Dec 2020
Multi-Objective Interpolation Training for Robustness to Label Noise
Multi-Objective Interpolation Training for Robustness to Label Noise
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
30
112
0
08 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with
  Noisy Labels
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
103
34
0
08 Dec 2020
Dynamic Curriculum Learning for Low-Resource Neural Machine Translation
Dynamic Curriculum Learning for Low-Resource Neural Machine Translation
Chen Xu
Bojie Hu
Yufan Jiang
Kai Feng
Zeyang Wang
Shen Huang
Qi Ju
Tong Xiao
Jingbo Zhu
15
22
0
30 Nov 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural
  Networks
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
48
24
0
19 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
258
0
18 Nov 2020
Artificial Neural Variability for Deep Learning: On Overfitting, Noise
  Memorization, and Catastrophic Forgetting
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
60
0
12 Nov 2020
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
159
0
09 Nov 2020
On Robustness and Bias Analysis of BERT-based Relation Extraction
On Robustness and Bias Analysis of BERT-based Relation Extraction
Luoqiu Li
Xiang Chen
Hongbin Ye
Zhen Bi
Shumin Deng
Ningyu Zhang
Huajun Chen
32
18
0
14 Sep 2020
Neither Private Nor Fair: Impact of Data Imbalance on Utility and
  Fairness in Differential Privacy
Neither Private Nor Fair: Impact of Data Imbalance on Utility and Fairness in Differential Privacy
Tom Farrand
Fatemehsadat Mireshghallah
Sahib Singh
Andrew Trask
FedML
11
88
0
10 Sep 2020
Simplify and Robustify Negative Sampling for Implicit Collaborative
  Filtering
Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering
Jingtao Ding
Yuhan Quan
Quanming Yao
Yong Li
Depeng Jin
16
97
0
07 Sep 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via
  Influence Estimation
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
46
440
0
09 Aug 2020
Data-driven Meta-set Based Fine-Grained Visual Classification
Data-driven Meta-set Based Fine-Grained Visual Classification
Chuanyi Zhang
Yazhou Yao
Xiangbo Shu
Zechao Li
Zhenmin Tang
Qi Wu
NoLa
21
2
0
06 Aug 2020
Salvage Reusable Samples from Noisy Data for Robust Learning
Salvage Reusable Samples from Noisy Data for Robust Learning
Zeren Sun
Xiansheng Hua
Yazhou Yao
Xiu-Shen Wei
Guosheng Hu
Jian Zhang
NoLa
29
41
0
06 Aug 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
24
963
0
16 Jul 2020
Meta Soft Label Generation for Noisy Labels
Meta Soft Label Generation for Noisy Labels
G. Algan
ilkay Ulusoy
NoLa
30
38
0
11 Jul 2020
Knowledge Distillation Beyond Model Compression
Knowledge Distillation Beyond Model Compression
F. Sarfraz
Elahe Arani
Bahram Zonooz
20
40
0
03 Jul 2020
PGD-UNet: A Position-Guided Deformable Network for Simultaneous
  Segmentation of Organs and Tumors
PGD-UNet: A Position-Guided Deformable Network for Simultaneous Segmentation of Organs and Tumors
Ziqiang Li
Hong Pan
Yaping Zhu
•. A. K. Qin
12
20
0
02 Jul 2020
Measuring Memorization Effect in Word-Level Neural Networks Probing
Measuring Memorization Effect in Word-Level Neural Networks Probing
Rudolf Rosa
Tomáš Musil
David Marevcek
30
3
0
29 Jun 2020
What Do Neural Networks Learn When Trained With Random Labels?
What Do Neural Networks Learn When Trained With Random Labels?
Hartmut Maennel
Ibrahim M. Alabdulmohsin
Ilya O. Tolstikhin
R. Baldock
Olivier Bousquet
Sylvain Gelly
Daniel Keysers
FedML
48
87
0
18 Jun 2020
Previous
12345678
Next