ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10743
  4. Cited By
The Cramer Distance as a Solution to Biased Wasserstein Gradients

The Cramer Distance as a Solution to Biased Wasserstein Gradients

30 May 2017
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
    GAN
ArXivPDFHTML

Papers citing "The Cramer Distance as a Solution to Biased Wasserstein Gradients"

25 / 75 papers shown
Title
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
Ruben Tolosana
R. Vera-Rodríguez
Julian Fierrez
Aythami Morales
J. Ortega-Garcia
3DPC
CVBM
51
775
0
01 Jan 2020
GANprintR: Improved Fakes and Evaluation of the State of the Art in Face
  Manipulation Detection
GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection
João C. Neves
Ruben Tolosana
R. Vera-Rodríguez
Vasco Lopes
Hugo Proencca
Julian Fierrez
AAML
PICV
21
128
0
13 Nov 2019
Small-GAN: Speeding Up GAN Training Using Core-sets
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
38
72
0
29 Oct 2019
Stabilizing Generative Adversarial Networks: A Survey
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
29
84
0
30 Sep 2019
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
131
101
0
28 Sep 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
27
159
0
11 Jun 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GAN
OT
16
17
0
08 Jun 2019
Cherenkov Detectors Fast Simulation Using Neural Networks
Cherenkov Detectors Fast Simulation Using Neural Networks
D. Derkach
N. Kazeev
Fedor Ratnikov
Andrey Ustyuzhanin
Alexandra Volokhova
11
28
0
28 Mar 2019
Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints
Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints
Ning Yu
Larry S. Davis
Mario Fritz
27
3
0
20 Nov 2018
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Emilien Dupont
S. Suresha
34
14
0
08 Oct 2018
Airline Passenger Name Record Generation using Generative Adversarial
  Networks
Airline Passenger Name Record Generation using Generative Adversarial Networks
Alejandro Mottini
Alix Lhéritier
Rodrigo Acuna-Agost
GAN
23
50
0
17 Jul 2018
Autoregressive Quantile Networks for Generative Modeling
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
28
85
0
14 Jun 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCV
SSeg
47
568
0
13 Jun 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OT
GAN
22
323
0
15 Mar 2018
Quantitatively Evaluating GANs With Divergences Proposed for Training
Quantitatively Evaluating GANs With Divergences Proposed for Training
Daniel Jiwoong Im
He Ma
Graham W. Taylor
K. Branson
EGVM
19
69
0
02 Mar 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
35
112
0
23 Feb 2018
First Order Generative Adversarial Networks
First Order Generative Adversarial Networks
Calvin Seward
Thomas Unterthiner
Urs M. Bergmann
Nikolay Jetchev
Sepp Hochreiter
GAN
40
8
0
13 Feb 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
43
1,453
0
04 Jan 2018
Geometrical Insights for Implicit Generative Modeling
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
32
49
0
21 Dec 2017
Correcting Nuisance Variation using Wasserstein Distance
Correcting Nuisance Variation using Wasserstein Distance
Gil Tabak
Minjie Fan
Samuel J. Yang
Stephan Hoyer
Geoff Davis
25
9
0
02 Nov 2017
ChemGAN challenge for drug discovery: can AI reproduce natural chemical
  diversity?
ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity?
Mostapha Benhenda
GAN
19
102
0
28 Aug 2017
Likelihood Estimation for Generative Adversarial Networks
Likelihood Estimation for Generative Adversarial Networks
Hamid Eghbalzadeh
Gerhard Widmer
GAN
32
8
0
24 Jul 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
46
618
0
01 Jun 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
269
2,552
0
25 Jan 2016
Previous
12