ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10359
  4. Cited By
Neural Embeddings of Graphs in Hyperbolic Space

Neural Embeddings of Graphs in Hyperbolic Space

29 May 2017
B. Chamberlain
J. Clough
M. Deisenroth
    GNN
ArXivPDFHTML

Papers citing "Neural Embeddings of Graphs in Hyperbolic Space"

28 / 28 papers shown
Title
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Gal Mishne
Ronen Talmon
45
2
0
28 Oct 2024
Compositional Entailment Learning for Hyperbolic Vision-Language Models
Compositional Entailment Learning for Hyperbolic Vision-Language Models
Avik Pal
Max van Spengler
Guido Maria DÁmely di Melendugno
Alessandro Flaborea
Fabio Galasso
Pascal Mettes
CoGe
53
5
0
09 Oct 2024
A Geometry-Aware Algorithm to Learn Hierarchical Embeddings in
  Hyperbolic Space
A Geometry-Aware Algorithm to Learn Hierarchical Embeddings in Hyperbolic Space
Zhangyu Wang
Lantian Xu
Zhifeng Kong
Weilong Wang
Xuyu Peng
Enyang Zheng
34
0
0
23 Jul 2024
Symmetry-driven embedding of networks in hyperbolic space
Symmetry-driven embedding of networks in hyperbolic space
Simon Lizotte
Jean-Gabriel Young
Antoine Allard
39
1
0
15 Jun 2024
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Nimit Rana
45
0
0
02 Feb 2024
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
42
4
0
23 Oct 2023
Fast hyperboloid decision tree algorithms
Fast hyperboloid decision tree algorithms
Philippe Chlenski
Ethan Turok
A. Moretti
I. Pe’er
31
4
0
20 Oct 2023
Relating graph auto-encoders to linear models
Relating graph auto-encoders to linear models
Solveig Klepper
U. V. Luxburg
25
1
0
03 Nov 2022
Sinhala Sentence Embedding: A Two-Tiered Structure for Low-Resource
  Languages
Sinhala Sentence Embedding: A Two-Tiered Structure for Low-Resource Languages
Gihan Weeraprameshwara
Vihanga Jayawickrama
Nisansa de Silva
Yudhanjaya Wijeratne
38
4
0
26 Oct 2022
Hyperbolic Deep Reinforcement Learning
Hyperbolic Deep Reinforcement Learning
Edoardo Cetin
B. Chamberlain
Michael M. Bronstein
Jonathan J. Hunt
50
21
0
04 Oct 2022
Poincaré Heterogeneous Graph Neural Networks for Sequential
  Recommendation
Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation
Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Kaixin Gao
Bing Han
Lin Zheng
Xiaobo Guo
29
14
0
16 May 2022
A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph
  Representations
A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations
Nikolaos Nakis
Abdulkadir Çelikkanat
Sune Lehmann
Morten Mørup
28
7
0
12 Apr 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
72
23
0
02 Feb 2022
Neural Distance Embeddings for Biological Sequences
Neural Distance Embeddings for Biological Sequences
Gabriele Corso
Rex Ying
Michal Pándy
Petar Velivcković
J. Leskovec
Pietro Lio
25
40
0
20 Sep 2021
Word2Box: Capturing Set-Theoretic Semantics of Words using Box
  Embeddings
Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings
S. Dasgupta
Michael Boratko
Siddhartha Mishra
Shriya Atmakuri
Dhruvesh Patel
Xiang Lorraine Li
Andrew McCallum
NAI
33
21
0
28 Jun 2021
Network Representation Learning: From Traditional Feature Learning to
  Deep Learning
Network Representation Learning: From Traditional Feature Learning to Deep Learning
Ke Sun
Lei Wang
Bo Xu
Wenhong Zhao
S. Teng
Feng Xia
GNN
25
28
0
07 Mar 2021
Benchmarking neural embeddings for link prediction in knowledge graphs
  under semantic and structural changes
Benchmarking neural embeddings for link prediction in knowledge graphs under semantic and structural changes
Asan Agibetov
Matthias Samwald
39
8
0
15 May 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
22
287
0
07 May 2020
Hyperbolic Graph Convolutional Neural Networks
Hyperbolic Graph Convolutional Neural Networks
Ines Chami
Rex Ying
Christopher Ré
J. Leskovec
GNN
32
630
0
28 Oct 2019
Hydra: A method for strain-minimizing hyperbolic embedding of network-
  and distance-based data
Hydra: A method for strain-minimizing hyperbolic embedding of network- and distance-based data
Martin Keller-Ressel
Stephanie Nargang
14
38
0
21 Mar 2019
Scalable Hyperbolic Recommender Systems
Scalable Hyperbolic Recommender Systems
B. Chamberlain
Stephen R. Hardwick
D. Wardrope
Fabon Dzogang
F. Daolio
S. Vargas
LRM
18
47
0
22 Feb 2019
Using Embeddings to Correct for Unobserved Confounding in Networks
Using Embeddings to Correct for Unobserved Confounding in Networks
Victor Veitch
Yixin Wang
David M. Blei
CML
23
56
0
11 Feb 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDL
DRL
34
172
0
17 Jan 2019
Adversarial Classifier for Imbalanced Problems
Adversarial Classifier for Imbalanced Problems
Ehsan Montahaei
Mahsa Ghorbani
M. Baghshah
Hamid R. Rabiee
21
12
0
21 Nov 2018
HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for
  Recommender Systems
HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for Recommender Systems
Lucas Vinh Tran
Yi Tay
Shuai Zhang
Gao Cong
Xiaoli Li
27
122
0
05 Sep 2018
Semi-Supervised Learning on Graphs Based on Local Label Distributions
Semi-Supervised Learning on Graphs Based on Local Label Distributions
Evgheniy Faerman
Felix Borutta
Julian Busch
Matthias Schubert
41
7
0
15 Feb 2018
Specialising Word Vectors for Lexical Entailment
Specialising Word Vectors for Lexical Entailment
Ivan Vulić
N. Mrksic
42
107
0
17 Oct 2017
Representation Learning on Graphs: Methods and Applications
Representation Learning on Graphs: Methods and Applications
William L. Hamilton
Rex Ying
J. Leskovec
GNN
58
1,967
0
17 Sep 2017
1