ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04114
15
56

Using Embeddings to Correct for Unobserved Confounding in Networks

11 February 2019
Victor Veitch
Yixin Wang
David M. Blei
    CML
ArXivPDFHTML
Abstract

We consider causal inference in the presence of unobserved confounding. We study the case where a proxy is available for the unobserved confounding in the form of a network connecting the units. For example, the link structure of a social network carries information about its members. We show how to effectively use the proxy to do causal inference. The main idea is to reduce the causal estimation problem to a semi-supervised prediction of both the treatments and outcomes. Networks admit high-quality embedding models that can be used for this semi-supervised prediction. We show that the method yields valid inferences under suitable (weak) conditions on the quality of the predictive model. We validate the method with experiments on a semi-synthetic social network dataset. Code is available at github.com/vveitch/causal-network-embeddings.

View on arXiv
Comments on this paper