ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08841
  4. Cited By
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations

Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations

24 May 2017
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
    BDL
    OOD
    DRL
ArXivPDFHTML

Papers citing "Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations"

50 / 64 papers shown
Title
An Information Criterion for Controlled Disentanglement of Multimodal Data
An Information Criterion for Controlled Disentanglement of Multimodal Data
Chenyu Wang
Sharut Gupta
Xinyi Zhang
Sana Tonekaboni
Stefanie Jegelka
Tommi Jaakkola
Caroline Uhler
DRL
44
1
0
31 Oct 2024
Graph-based Unsupervised Disentangled Representation Learning via
  Multimodal Large Language Models
Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models
Baao Xie
Qiuyu Chen
Yunnan Wang
Zequn Zhang
Xin Jin
Wenjun Zeng
OffRL
45
2
0
26 Jul 2024
Towards Controllable Time Series Generation
Towards Controllable Time Series Generation
Yifan Bao
Yihao Ang
Qiang Huang
Anthony K. H. Tung
Zhiyong Huang
DiffM
48
4
0
06 Mar 2024
Multimodal Variational Auto-encoder based Audio-Visual Segmentation
Multimodal Variational Auto-encoder based Audio-Visual Segmentation
Yuxin Mao
Jing Zhang
Mochu Xiang
Yiran Zhong
Yuchao Dai
40
34
0
12 Oct 2023
Differentiable Random Partition Models
Differentiable Random Partition Models
Thomas M. Sutter
Alain Ryser
Joram Liebeskind
Julia E. Vogt
46
3
0
26 May 2023
Multifactor Sequential Disentanglement via Structured Koopman
  Autoencoders
Multifactor Sequential Disentanglement via Structured Koopman Autoencoders
Nimrod Berman
Ilana D Naiman
Omri Azencot
CoGe
32
22
0
30 Mar 2023
Measuring axiomatic soundness of counterfactual image models
Measuring axiomatic soundness of counterfactual image models
M. Monteiro
Fabio De Sousa Ribeiro
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
44
25
0
02 Mar 2023
Simple Disentanglement of Style and Content in Visual Representations
Simple Disentanglement of Style and Content in Visual Representations
Lilian Ngweta
Subha Maity
Alex Gittens
Yuekai Sun
Mikhail Yurochkin
CoGe
DRL
34
7
0
20 Feb 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
ContraFeat: Contrasting Deep Features for Semantic Discovery
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
26
2
0
14 Dec 2022
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
39
78
0
21 Nov 2022
3DLatNav: Navigating Generative Latent Spaces for Semantic-Aware 3D
  Object Manipulation
3DLatNav: Navigating Generative Latent Spaces for Semantic-Aware 3D Object Manipulation
Amaya Dharmasiri
Dinithi Dissanayake
Mohamed Afham
Isuru Dissanayake
Ranga Rodrigo
Kanchana Thilakarathna
3DPC
31
0
0
17 Nov 2022
Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
  Transformer-Based Variational AutoEncoder for Diverse Text Generation
Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in Transformer-Based Variational AutoEncoder for Diverse Text Generation
Jinyi Hu
Xiaoyuan Yi
Wenhao Li
Maosong Sun
Xingxu Xie
DRL
27
0
0
22 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Human Pose Driven Object Effects Recommendation
Human Pose Driven Object Effects Recommendation
Zhaoxin Fan
Feng Li
Hongyan Liu
Jun He
Xiaoyong Du
11
2
0
17 Sep 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
111
64
0
31 May 2022
Gacs-Korner Common Information Variational Autoencoder
Gacs-Korner Common Information Variational Autoencoder
Michael Kleinman
Alessandro Achille
Stefano Soatto
J. Kao
CML
DRL
32
12
0
24 May 2022
Attri-VAE: attribute-based interpretable representations of medical
  images with variational autoencoders
Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders
Irem Cetin
Maialen Stephens
Oscar Camara
M. A. G. Ballester
DRL
51
39
0
20 Mar 2022
Learning Group Importance using the Differentiable Hypergeometric
  Distribution
Learning Group Importance using the Differentiable Hypergeometric Distribution
Thomas M. Sutter
Laura Manduchi
Alain Ryser
Julia E. Vogt
46
7
0
03 Mar 2022
Multi-Instance Causal Representation Learning for Instance Label
  Prediction and Out-of-Distribution Generalization
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
Weijia Zhang
Xuanhui Zhang
Hanwen Deng
Min-Ling Zhang
21
22
0
25 Feb 2022
Retriever: Learning Content-Style Representation as a Token-Level
  Bipartite Graph
Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
Dacheng Yin
Xuanchi Ren
Chong Luo
Yuwang Wang
Zhiwei Xiong
Wenjun Zeng
58
13
0
24 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via
  Disentanglement
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
29
3
0
01 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Learning Conditional Invariance through Cycle Consistency
Learning Conditional Invariance through Cycle Consistency
M. Samarin
V. Nesterov
Mario Wieser
Aleksander Wieczorek
S. Parbhoo
Volker Roth
41
3
0
25 Nov 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
36
1
0
23 Oct 2021
Self-Enhancing Multi-filter Sequence-to-Sequence Model
Self-Enhancing Multi-filter Sequence-to-Sequence Model
Yunhao Yang
Zhaokun Xue
Andrew Whinston
40
1
0
25 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
82
0
08 Sep 2021
Disentangling Hate in Online Memes
Disentangling Hate in Online Memes
Rui Cao
Ziqing Fan
Roy Ka-wei Lee
Wen-Haw Chong
Jing Jiang
26
76
0
09 Aug 2021
Generalized Multimodal ELBO
Generalized Multimodal ELBO
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
24
89
0
06 May 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
58
38
0
07 Apr 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
33
81
0
16 Dec 2020
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
34
8
0
15 Dec 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
14
66
0
27 Oct 2020
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
173
33
0
08 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
30
4
0
05 Oct 2020
Generative Model without Prior Distribution Matching
Generative Model without Prior Distribution Matching
Cong Geng
Jia Wang
L. Chen
Zhiyong Gao
GAN
195
1
0
23 Sep 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
32
18
0
27 Aug 2020
iCaps: An Interpretable Classifier via Disentangled Capsule Networks
iCaps: An Interpretable Classifier via Disentangled Capsule Networks
Dahuin Jung
Jonghyun Lee
Jihun Yi
Sungroh Yoon
33
12
0
20 Aug 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
29
20
0
28 Jul 2020
Training Interpretable Convolutional Neural Networks by Differentiating
  Class-specific Filters
Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
16
47
0
16 Jul 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
48
147
0
13 Jul 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
39
67
0
15 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
32
83
0
18 May 2020
Face Identity Disentanglement via Latent Space Mapping
Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan
Amit H. Bermano
Yangyan Li
Daniel Cohen-Or
CVBM
CoGe
DRL
30
16
0
15 May 2020
Learning to Manipulate Individual Objects in an Image
Learning to Manipulate Individual Objects in an Image
Yanchao Yang
Yutong Chen
Stefano Soatto
OCL
13
37
0
11 Apr 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
56
136
0
22 Oct 2019
12
Next