Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07283
Cited By
Structured Bayesian Pruning via Log-Normal Multiplicative Noise
20 May 2017
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Structured Bayesian Pruning via Log-Normal Multiplicative Noise"
34 / 34 papers shown
Title
A Bayesian Interpretation of Adaptive Low-Rank Adaptation
Haolin Chen
Philip N. Garner
58
1
0
16 Sep 2024
Cluster Generation via Deep Energy-Based Model
A. Y. Artsukevich
S. Lepeshkin
34
0
0
17 Jun 2022
Statistical Guarantees for Approximate Stationary Points of Simple Neural Networks
Mahsa Taheri
Fang Xie
Johannes Lederer
31
0
0
09 May 2022
A Survey on Dropout Methods and Experimental Verification in Recommendation
Yongqian Li
Weizhi Ma
C. L. Philip Chen
Hao Fei
Yiqun Liu
Shaoping Ma
Yue Yang
40
10
0
05 Apr 2022
Speedup deep learning models on GPU by taking advantage of efficient unstructured pruning and bit-width reduction
Marcin Pietroñ
Dominik Zurek
30
13
0
28 Dec 2021
MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge
Geng Yuan
Xiaolong Ma
Wei Niu
Zhengang Li
Zhenglun Kong
...
Minghai Qin
Bin Ren
Yanzhi Wang
Sijia Liu
Xue Lin
33
89
0
26 Oct 2021
Dynamic Neural Network Architectural and Topological Adaptation and Related Methods -- A Survey
Lorenz Kummer
AI4CE
45
0
0
28 Jul 2021
R-Drop: Regularized Dropout for Neural Networks
Xiaobo Liang
Lijun Wu
Juntao Li
Yue Wang
Qi Meng
Tao Qin
Wei Chen
Hao Fei
Tie-Yan Liu
52
424
0
28 Jun 2021
DiffPrune: Neural Network Pruning with Deterministic Approximate Binary Gates and
L
0
L_0
L
0
Regularization
Yaniv Shulman
46
3
0
07 Dec 2020
Rethinking Weight Decay For Efficient Neural Network Pruning
Hugo Tessier
Vincent Gripon
Mathieu Léonardon
M. Arzel
T. Hannagan
David Bertrand
31
25
0
20 Nov 2020
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Lorenzo Valerio
F. M. Nardini
A. Passarella
R. Perego
25
12
0
17 Nov 2020
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
27
3
0
10 Nov 2020
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
36
15
0
10 Nov 2020
Principal Component Networks: Parameter Reduction Early in Training
R. Waleffe
Theodoros Rekatsinas
3DPC
19
9
0
23 Jun 2020
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
30
22
0
19 Aug 2019
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
MedIm
34
19
0
15 Aug 2019
Importance Estimation for Neural Network Pruning
Pavlo Molchanov
Arun Mallya
Stephen Tyree
I. Frosio
Jan Kautz
3DPC
42
859
0
25 Jun 2019
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
27
36
0
07 Jun 2019
Training CNNs with Selective Allocation of Channels
Jongheon Jeong
Jinwoo Shin
CVBM
41
15
0
11 May 2019
Play and Prune: Adaptive Filter Pruning for Deep Model Compression
Pravendra Singh
Vinay Kumar Verma
Piyush Rai
Vinay P. Namboodiri
VLM
33
71
0
11 May 2019
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
27
149
0
25 Apr 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
23
10
0
18 Dec 2018
Structured Pruning of Neural Networks with Budget-Aware Regularization
Carl Lemaire
Andrew Achkar
Pierre-Marc Jodoin
27
92
0
23 Nov 2018
Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector
Pravendra Singh
Manikandan Ravikiran
Neeraj Matiyali
Vinay P. Namboodiri
33
21
0
20 Nov 2018
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
25
151
0
23 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
24
171
0
01 Oct 2018
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
17
77
0
13 Jun 2018
Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking
Haichuan Yang
Yuhao Zhu
Ji Liu
CVBM
19
36
0
12 Jun 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
33
6
0
19 May 2018
Nonparametric Bayesian Deep Networks with Local Competition
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
29
32
0
19 May 2018
Variance Networks: When Expectation Does Not Meet Your Expectations
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
UQCV
22
23
0
10 Mar 2018
Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning
J. A. G. Higuera
David Meger
Gregory Dudek
BDL
22
39
0
06 Mar 2018
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
28
179
0
28 Feb 2018
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
39
119
0
29 May 2017
1