Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07263
Cited By
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
20 May 2017
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods"
49 / 349 papers shown
Title
Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models
Tong Niu
Joey Tianyi Zhou
AAML
21
85
0
06 Sep 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
L. Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
40
40
0
04 Sep 2018
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
35
388
0
05 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
23
1,997
0
10 Jul 2018
Adversarial Examples in Deep Learning: Characterization and Divergence
Wenqi Wei
Ling Liu
Margaret Loper
Stacey Truex
Lei Yu
Mehmet Emre Gursoy
Yanzhao Wu
AAML
SILM
33
18
0
29 Jun 2018
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
27
41
0
15 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,840
0
31 May 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
20
394
0
30 May 2018
Automated Verification of Neural Networks: Advances, Challenges and Perspectives
Francesco Leofante
Nina Narodytska
Luca Pulina
A. Tacchella
AAML
12
69
0
25 May 2018
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
24
159
0
13 May 2018
Towards Dependable Deep Convolutional Neural Networks (CNNs) with Out-distribution Learning
Mahdieh Abbasi
Arezoo Rajabi
Christian Gagné
R. Bobba
OODD
25
6
0
24 Apr 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
22
21
0
23 Apr 2018
MEADE: Towards a Malicious Email Attachment Detection Engine
Ethan M. Rudd
Richard E. Harang
Joshua Saxe
25
32
0
22 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
19
96
0
20 Apr 2018
Semantic Adversarial Deep Learning
S. Seshia
S. Jha
T. Dreossi
AAML
SILM
27
90
0
19 Apr 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
52
358
0
22 Mar 2018
Technical Report: When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks
Octavian Suciu
R. Marginean
Yigitcan Kaya
Hal Daumé
Tudor Dumitras
AAML
31
283
0
19 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
33
29
0
14 Mar 2018
Robust GANs against Dishonest Adversaries
Zhi Xu
Chengtao Li
Stefanie Jegelka
AAML
34
3
0
27 Feb 2018
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
27
248
0
23 Feb 2018
Deep Defense: Training DNNs with Improved Adversarial Robustness
Ziang Yan
Yiwen Guo
Changshui Zhang
AAML
35
109
0
23 Feb 2018
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
25
74
0
22 Feb 2018
Secure Detection of Image Manipulation by means of Random Feature Selection
Z. Chen
B. Tondi
Xiaolong Li
R. Ni
Yao-Min Zhao
Mauro Barni
AAML
25
33
0
02 Feb 2018
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Abdullah Al-Dujaili
Alex Huang
Erik Hemberg
Una-May O’Reilly
AAML
25
186
0
09 Jan 2018
Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks
Yongshuai Liu
Jiyu Chen
Hao Chen
AAML
14
14
0
09 Jan 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Bo-wen Li
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
26
726
0
08 Jan 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
31
174
0
26 Dec 2017
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
10
38
0
11 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
25
1,388
0
08 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
21
14
0
03 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
38
418
0
02 Dec 2017
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
52
117
0
20 Nov 2017
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
23
12
0
15 Nov 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming-Yu Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
636
0
13 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
PassGAN: A Deep Learning Approach for Password Guessing
Briland Hitaj
Paolo Gasti
G. Ateniese
Fernando Perez-Cruz
GAN
30
246
0
01 Sep 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
53
11,854
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
29
242
0
15 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
45
505
0
23 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
65
2,699
0
19 May 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
23
709
0
21 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,746
0
26 Sep 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
Previous
1
2
3
4
5
6
7