Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07263
Cited By
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
20 May 2017
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods"
50 / 349 papers shown
Title
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
31
5
0
28 Dec 2021
Robust Graph Neural Networks via Probabilistic Lipschitz Constraints
R. Arghal
Eric Lei
Shirin Saeedi Bidokhti
19
19
0
14 Dec 2021
Medical Aegis: Robust adversarial protectors for medical images
Qingsong Yao
Zecheng He
S. Kevin Zhou
AAML
MedIm
27
2
0
22 Nov 2021
TnT Attacks! Universal Naturalistic Adversarial Patches Against Deep Neural Network Systems
Bao Gia Doan
Minhui Xue
Shiqing Ma
Ehsan Abbasnejad
Damith C. Ranasinghe
AAML
41
53
0
19 Nov 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
270
0
09 Nov 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
81
0
26 Oct 2021
Can't Fool Me: Adversarially Robust Transformer for Video Understanding
D. Choudhary
Palash Goyal
Saurabh Sahu
ViT
36
0
0
26 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
293
0
18 Oct 2021
Out-of-Distribution Robustness in Deep Learning Compression
Eric Lei
Hamed Hassani
Shirin Saeedi Bidokhti
OOD
OODD
8
5
0
13 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
356
0
04 Oct 2021
Mitigating Black-Box Adversarial Attacks via Output Noise Perturbation
Manjushree B. Aithal
Xiaohua Li
AAML
60
6
0
30 Sep 2021
Adversarial Transfer Attacks With Unknown Data and Class Overlap
Luke E. Richards
A. Nguyen
Ryan Capps
Steven D. Forsythe
Cynthia Matuszek
Edward Raff
AAML
41
7
0
23 Sep 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan Oseledets
AAML
52
16
0
22 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
35
4
0
16 Sep 2021
SEC4SR: A Security Analysis Platform for Speaker Recognition
Guangke Chen
Zhe Zhao
Fu Song
Sen Chen
Lingling Fan
Yang Liu
AAML
25
12
0
04 Sep 2021
Recent advances for quantum classifiers
Weikang Li
D. Deng
AAML
39
84
0
30 Aug 2021
Kryptonite: An Adversarial Attack Using Regional Focus
Yogesh Kulkarni
Krisha Bhambani
AAML
19
3
0
23 Aug 2021
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
Chong Xiang
Saeed Mahloujifar
Prateek Mittal
VLM
AAML
24
73
0
20 Aug 2021
AdvDrop: Adversarial Attack to DNNs by Dropping Information
Ranjie Duan
YueFeng Chen
Dantong Niu
Yun Yang
•. A. K. Qin
Yuan He
AAML
24
90
0
20 Aug 2021
A Survey on Open Set Recognition
Atefeh Mahdavi
Marco M. Carvalho
BDL
23
35
0
18 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
30
65
0
24 Jul 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
196
0
12 Jul 2021
Data Poisoning Won't Save You From Facial Recognition
Evani Radiya-Dixit
Sanghyun Hong
Nicholas Carlini
Florian Tramèr
AAML
PICV
15
57
0
28 Jun 2021
Certified Robustness via Randomized Smoothing over Multiplicative Parameters of Input Transformations
Nikita Muravev
Aleksandr Petiushko
AAML
18
7
0
28 Jun 2021
Adversarial Examples in Multi-Layer Random ReLU Networks
Peter L. Bartlett
Sébastien Bubeck
Yeshwanth Cherapanamjeri
AAML
GAN
27
28
0
23 Jun 2021
Attack to Fool and Explain Deep Networks
Naveed Akhtar
M. Jalwana
Bennamoun
Ajmal Mian
AAML
27
33
0
20 Jun 2021
Evaluating the Robustness of Trigger Set-Based Watermarks Embedded in Deep Neural Networks
Suyoung Lee
Wonho Song
Suman Jana
M. Cha
Sooel Son
AAML
11
13
0
18 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
28
23
0
12 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Reveal of Vision Transformers Robustness against Adversarial Attacks
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
ViT
15
56
0
07 Jun 2021
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
31
43
0
03 Jun 2021
BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability
Luke Chang
Katharina Dost
Kaiqi Zhao
Ambra Demontis
Fabio Roli
Gillian Dobbie
Jörg Simon Wicker
AAML
19
2
0
02 May 2021
Black-box Gradient Attack on Graph Neural Networks: Deeper Insights in Graph-based Attack and Defense
Haoxi Zhan
Xiaobing Pei
AAML
24
9
0
30 Apr 2021
Adaptive Adversarial Training for Meta Reinforcement Learning
Shiqi Chen
Zhengyu Chen
Donglin Wang
30
6
0
27 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
Ensemble-in-One: Learning Ensemble within Random Gated Networks for Enhanced Adversarial Robustness
Yi Cai
Xuefei Ning
Huazhong Yang
Yu Wang
AAML
27
4
0
27 Mar 2021
MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
Zhikai Chen
Lingxi Xie
Shanmin Pang
Yong He
Bo Zhang
AAML
36
32
0
26 Mar 2021
Explainable Adversarial Attacks in Deep Neural Networks Using Activation Profiles
G. Cantareira
R. Mello
F. Paulovich
AAML
24
9
0
18 Mar 2021
AI Fairness via Domain Adaptation
Neil J. Joshi
Philippe Burlina
21
15
0
15 Mar 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
Adversarial Laser Beam: Effective Physical-World Attack to DNNs in a Blink
Ranjie Duan
Xiaofeng Mao
•. A. K. Qin
Yun Yang
YueFeng Chen
Shaokai Ye
Yuan He
AAML
24
138
0
11 Mar 2021
WaveGuard: Understanding and Mitigating Audio Adversarial Examples
Shehzeen Samarah Hussain
Paarth Neekhara
Shlomo Dubnov
Julian McAuley
F. Koushanfar
AAML
30
71
0
04 Mar 2021
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
P. Harder
Franz-Josef Pfreundt
M. Keuper
J. Keuper
AAML
27
48
0
04 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
269
0
02 Mar 2021
Effective and Efficient Vote Attack on Capsule Networks
Jindong Gu
Baoyuan Wu
Volker Tresp
AAML
17
26
0
19 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
34
132
0
14 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
23
29
0
13 Feb 2021
Dompteur: Taming Audio Adversarial Examples
Thorsten Eisenhofer
Lea Schonherr
Joel Frank
Lars Speckemeier
D. Kolossa
Thorsten Holz
AAML
33
24
0
10 Feb 2021
Previous
1
2
3
4
5
6
7
Next