ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00893
21
35

A Survey on Open Set Recognition

18 August 2021
Atefeh Mahdavi
Marco M. Carvalho
    BDL
ArXivPDFHTML
Abstract

Open Set Recognition (OSR) is about dealing with unknown situations that were not learned by the models during training. In this paper, we provide a survey of existing works about OSR and distinguish their respective advantages and disadvantages to help out new researchers interested in the subject. The categorization of OSR models is provided along with an extensive summary of recent progress. Additionally, the relationships between OSR and its related tasks including multi-class classification and novelty detection are analyzed. It is concluded that OSR can appropriately deal with unknown instances in the real-world where capturing all possible classes in the training data is not practical. Lastly, applications of OSR are highlighted and some new directions for future research topics are suggested.

View on arXiv
Comments on this paper