Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 1,344 papers shown
Title
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
398
0
26 Feb 2020
Relevant-features based Auxiliary Cells for Energy Efficient Detection of Natural Errors
Sai Aparna Aketi
Priyadarshini Panda
Kaushik Roy
8
1
0
25 Feb 2020
Adversarial Perturbations Prevail in the Y-Channel of the YCbCr Color Space
Camilo Pestana
Naveed Akhtar
Wei Liu
D. Glance
Ajmal Mian
AAML
29
10
0
25 Feb 2020
Towards Rapid and Robust Adversarial Training with One-Step Attacks
Leo Schwinn
René Raab
Björn Eskofier
AAML
33
6
0
24 Feb 2020
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference
Ting-Kuei Hu
Tianlong Chen
Haotao Wang
Zhangyang Wang
OOD
AAML
3DH
12
84
0
24 Feb 2020
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Using Single-Step Adversarial Training to Defend Iterative Adversarial Examples
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
22
19
0
22 Feb 2020
UnMask: Adversarial Detection and Defense Through Robust Feature Alignment
Scott Freitas
Shang-Tse Chen
Zijie J. Wang
Duen Horng Chau
AAML
26
23
0
21 Feb 2020
Robustness from Simple Classifiers
Sharon Qian
Dimitris Kalimeris
Gal Kaplun
Yaron Singer
AAML
13
1
0
21 Feb 2020
MaxUp: A Simple Way to Improve Generalization of Neural Network Training
Chengyue Gong
Tongzheng Ren
Mao Ye
Qiang Liu
AAML
29
56
0
20 Feb 2020
Strategy to Increase the Safety of a DNN-based Perception for HAD Systems
Timo Sämann
Peter Schlicht
Fabian Hüger
8
15
0
20 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
33
154
0
20 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
109
823
0
19 Feb 2020
TensorShield: Tensor-based Defense Against Adversarial Attacks on Images
Negin Entezari
Evangelos E. Papalexakis
AAML
16
6
0
18 Feb 2020
Blind Adversarial Network Perturbations
Milad Nasr
Alireza Bahramali
Amir Houmansadr
AAML
16
6
0
16 Feb 2020
Adversarial Distributional Training for Robust Deep Learning
Yinpeng Dong
Zhijie Deng
Tianyu Pang
Hang Su
Jun Zhu
OOD
27
121
0
14 Feb 2020
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
25
310
0
14 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
29
485
0
12 Feb 2020
Improving the affordability of robustness training for DNNs
Sidharth Gupta
Parijat Dube
Ashish Verma
AAML
27
15
0
11 Feb 2020
Playing to Learn Better: Repeated Games for Adversarial Learning with Multiple Classifiers
P. Dasgupta
J. B. Collins
Michael McCarrick
AAML
27
1
0
10 Feb 2020
Watch out! Motion is Blurring the Vision of Your Deep Neural Networks
Qing Guo
Felix Juefei Xu
Xiaofei Xie
Lei Ma
Jian-Xun Wang
Bing Yu
Wei Feng
Yang Liu
AAML
36
16
0
10 Feb 2020
Attacking Optical Character Recognition (OCR) Systems with Adversarial Watermarks
Lu Chen
Wenyuan Xu
AAML
24
21
0
08 Feb 2020
AI-GAN: Attack-Inspired Generation of Adversarial Examples
Tao Bai
Jun Zhao
Jinlin Zhu
Shoudong Han
Jiefeng Chen
Bo Li
Alex C. Kot
GAN
39
48
0
06 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Regularizers for Single-step Adversarial Training
S. VivekB.
R. Venkatesh Babu
AAML
16
7
0
03 Feb 2020
Towards Sharper First-Order Adversary with Quantized Gradients
Zhuanghua Liu
Ivor W. Tsang
AAML
22
0
0
01 Feb 2020
Tiny noise, big mistakes: Adversarial perturbations induce errors in Brain-Computer Interface spellers
Xiao Zhang
Dongrui Wu
L. Ding
Hanbin Luo
Chin-Teng Lin
T. Jung
Ricardo Chavarriaga
AAML
22
59
0
30 Jan 2020
Weighted Average Precision: Adversarial Example Detection in the Visual Perception of Autonomous Vehicles
Yilan Li
Senem Velipasalar
AAML
6
7
0
25 Jan 2020
Secure and Robust Machine Learning for Healthcare: A Survey
A. Qayyum
Junaid Qadir
Muhammad Bilal
Ala I. Al-Fuqaha
AAML
OOD
52
376
0
21 Jan 2020
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie Yang
Xiaolin Huang
AAML
31
104
0
16 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,160
0
12 Jan 2020
Sparse Black-box Video Attack with Reinforcement Learning
Xingxing Wei
Huanqian Yan
Bo Li
AAML
31
49
0
11 Jan 2020
PaRoT: A Practical Framework for Robust Deep Neural Network Training
Edward W. Ayers
Francisco Eiras
Majd Hawasly
I. Whiteside
OOD
23
19
0
07 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
31
36
0
26 Dec 2019
Certified Robustness for Top-k Predictions against Adversarial Perturbations via Randomized Smoothing
Jinyuan Jia
Xiaoyu Cao
Binghui Wang
Neil Zhenqiang Gong
AAML
26
92
0
20 Dec 2019
A New Ensemble Method for Concessively Targeted Multi-model Attack
Ziwen He
Wei Wang
Xinsheng Xuan
Jing Dong
Tieniu Tan
AAML
19
2
0
19 Dec 2019
n
n
n
-ML: Mitigating Adversarial Examples via Ensembles of Topologically Manipulated Classifiers
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
AAML
18
6
0
19 Dec 2019
Towards a Robust Classifier: An MDL-Based Method for Generating Adversarial Examples
B. Asadi
Vijay Varadharajan
AAML
23
3
0
11 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
81
6,103
0
10 Dec 2019
Statistically Robust Neural Network Classification
Benjie Wang
Stefan Webb
Tom Rainforth
OOD
AAML
24
19
0
10 Dec 2019
Expansion of Cyber Attack Data From Unbalanced Datasets Using Generative Techniques
Ibrahim Yilmaz
Rahat Masum
27
14
0
10 Dec 2019
A Survey of Game Theoretic Approaches for Adversarial Machine Learning in Cybersecurity Tasks
P. Dasgupta
J. B. Collins
AAML
9
43
0
04 Dec 2019
Walking on the Edge: Fast, Low-Distortion Adversarial Examples
Hanwei Zhang
Yannis Avrithis
Teddy Furon
Laurent Amsaleg
AAML
20
45
0
04 Dec 2019
A Survey of Black-Box Adversarial Attacks on Computer Vision Models
Siddhant Bhambri
Sumanyu Muku
Avinash Tulasi
Arun Balaji Buduru
AAML
VLM
20
79
0
03 Dec 2019
Universal Adversarial Perturbations for CNN Classifiers in EEG-Based BCIs
Zihan Liu
Lubin Meng
Xiao Zhang
Weili Fang
Dongrui Wu
AAML
19
39
0
03 Dec 2019
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
39
145
0
02 Dec 2019
Indirect Local Attacks for Context-aware Semantic Segmentation Networks
K. K. Nakka
Mathieu Salzmann
SSeg
AAML
19
31
0
29 Nov 2019
Towards Security Threats of Deep Learning Systems: A Survey
Yingzhe He
Guozhu Meng
Kai Chen
Xingbo Hu
Jinwen He
AAML
ELM
15
14
0
28 Nov 2019
Previous
1
2
3
...
19
20
21
...
25
26
27
Next