ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01667
12
79

A Survey of Black-Box Adversarial Attacks on Computer Vision Models

3 December 2019
Siddhant Bhambri
Sumanyu Muku
Avinash Tulasi
Arun Balaji Buduru
    AAML
    VLM
ArXivPDFHTML
Abstract

Machine learning has seen tremendous advances in the past few years, which has lead to deep learning models being deployed in varied applications of day-to-day life. Attacks on such models using perturbations, particularly in real-life scenarios, pose a severe challenge to their applicability, pushing research into the direction which aims to enhance the robustness of these models. After the introduction of these perturbations by Szegedy et al. [1], significant amount of research has focused on the reliability of such models, primarily in two aspects - white-box, where the adversary has access to the targeted model and related parameters; and the black-box, which resembles a real-life scenario with the adversary having almost no knowledge of the model to be attacked. To provide a comprehensive security cover, it is essential to identify, study, and build defenses against such attacks. Hence, in this paper, we propose to present a comprehensive comparative study of various black-box adversarial attacks and defense techniques.

View on arXiv
Comments on this paper