Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 1,345 papers shown
Title
"What's in the box?!": Deflecting Adversarial Attacks by Randomly Deploying Adversarially-Disjoint Models
Sahar Abdelnabi
Mario Fritz
AAML
32
7
0
09 Feb 2021
Target Training Does Adversarial Training Without Adversarial Samples
Blerta Lindqvist
AAML
13
0
0
09 Feb 2021
Security and Privacy for Artificial Intelligence: Opportunities and Challenges
Ayodeji Oseni
Nour Moustafa
Helge Janicke
Peng Liu
Z. Tari
A. Vasilakos
AAML
34
49
0
09 Feb 2021
Benford's law: what does it say on adversarial images?
João G. Zago
Fabio L. Baldissera
Eric A. Antonelo
Rodrigo T. Saad
AAML
22
2
0
09 Feb 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
21
51
0
08 Feb 2021
Adversarial example generation with AdaBelief Optimizer and Crop Invariance
Bo Yang
Hengwei Zhang
Yuchen Zhang
Kaiyong Xu
Jin-dong Wang
AAML
33
29
0
07 Feb 2021
Noise Optimization for Artificial Neural Networks
Li Xiao
Zeliang Zhang
Yijie Peng
39
13
0
06 Feb 2021
Robust Single-step Adversarial Training with Regularizer
Lehui Xie
Yaopeng Wang
Jianwei Yin
Ximeng Liu
AAML
36
1
0
05 Feb 2021
Optimal Transport as a Defense Against Adversarial Attacks
Quentin Bouniot
Romaric Audigier
Angélique Loesch
AAML
OOD
11
9
0
05 Feb 2021
PredCoin: Defense against Query-based Hard-label Attack
Junfeng Guo
Yaswanth Yadlapalli
Lothar Thiele
Ang Li
Cong Liu
AAML
28
0
0
04 Feb 2021
Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review
Dongrui Wu
Jiaxin Xu
Weili Fang
Yi Zhang
Liuqing Yang
Xiaodong Xu
Hanbin Luo
Xiang Yu
AAML
37
25
0
04 Feb 2021
Key Technology Considerations in Developing and Deploying Machine Learning Models in Clinical Radiology Practice
V. Kulkarni
M. Gawali
A. Kharat
VLM
56
21
0
03 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
86
476
0
02 Feb 2021
Robust Adversarial Attacks Against DNN-Based Wireless Communication Systems
Alireza Bahramali
Milad Nasr
Amir Houmansadr
Dennis Goeckel
Don Towsley
AAML
45
53
0
01 Feb 2021
Towards Speeding up Adversarial Training in Latent Spaces
Yaguan Qian
Qiqi Shao
Tengteng Yao
Bin Wang
Shouling Ji
Shaoning Zeng
Zhaoquan Gu
Wassim Swaileh
AAML
22
4
0
01 Feb 2021
Admix: Enhancing the Transferability of Adversarial Attacks
Xiaosen Wang
Xu He
Jingdong Wang
Kun He
AAML
86
194
0
31 Jan 2021
Adversarial Learning with Cost-Sensitive Classes
Hao Shen
Sihong Chen
Ran Wang
Xizhao Wang
AAML
30
11
0
29 Jan 2021
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
26
13
0
28 Jan 2021
Robust Android Malware Detection System against Adversarial Attacks using Q-Learning
Hemant Rathore
S. K. Sahay
Piyush Nikam
Mohit Sewak
AAML
24
61
0
27 Jan 2021
Generalizing Adversarial Examples by AdaBelief Optimizer
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
AAML
22
1
0
25 Jan 2021
A Comprehensive Evaluation Framework for Deep Model Robustness
Jun Guo
Wei Bao
Jiakai Wang
Yuqing Ma
Xing Gao
Gang Xiao
Aishan Liu
Zehao Zhao
Xianglong Liu
Wenjun Wu
AAML
ELM
38
55
0
24 Jan 2021
Online Adversarial Purification based on Self-Supervision
Changhao Shi
Chester Holtz
Gal Mishne
AAML
14
57
0
23 Jan 2021
i-Algebra: Towards Interactive Interpretability of Deep Neural Networks
Xinyang Zhang
Ren Pang
S. Ji
Fenglong Ma
Ting Wang
HAI
AI4CE
19
5
0
22 Jan 2021
Image Steganography based on Iteratively Adversarial Samples of A Synchronized-directions Sub-image
Xinghong Qin
Shunquan Tan
Bin Li
Weixuan Tang
Jiwu Huang
GAN
AAML
DiffM
11
0
0
13 Jan 2021
On the Effectiveness of Small Input Noise for Defending Against Query-based Black-Box Attacks
Junyoung Byun
Hyojun Go
Changick Kim
AAML
140
19
0
13 Jan 2021
Random Transformation of Image Brightness for Adversarial Attack
Bo Yang
Kaiyong Xu
Hengjun Wang
Hengwei Zhang
AAML
30
8
0
12 Jan 2021
Towards a Robust and Trustworthy Machine Learning System Development: An Engineering Perspective
Pulei Xiong
Scott Buffett
Shahrear Iqbal
Philippe Lamontagne
M. Mamun
Heather Molyneaux
OOD
47
15
0
08 Jan 2021
Adversarial Attack Attribution: Discovering Attributable Signals in Adversarial ML Attacks
Marissa Dotter
Sherry Xie
Keith Manville
Josh Harguess
Colin Busho
Mikel Rodriguez
AAML
12
2
0
08 Jan 2021
Unsupervised Domain Adaptation of Black-Box Source Models
Haojian Zhang
Yabin Zhang
Kui Jia
Lei Zhang
135
51
0
08 Jan 2021
Understanding the Error in Evaluating Adversarial Robustness
Pengfei Xia
Ziqiang Li
Hongjing Niu
Bin Li
AAML
ELM
44
5
0
07 Jan 2021
Practical Blind Membership Inference Attack via Differential Comparisons
Bo Hui
Yuchen Yang
Haolin Yuan
Philippe Burlina
Neil Zhenqiang Gong
Yinzhi Cao
MIACV
35
121
0
05 Jan 2021
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Mohamed Bennai
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
81
100
0
04 Jan 2021
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis
S. Chatzis
Antonios Alexos
Sergios Theodoridis
BDL
AAML
OOD
61
19
0
04 Jan 2021
Patch-wise++ Perturbation for Adversarial Targeted Attacks
Lianli Gao
Qilong Zhang
Jingkuan Song
Heng Tao Shen
AAML
40
17
0
31 Dec 2020
Enhanced Regularizers for Attributional Robustness
A. Sarkar
Anirban Sarkar
V. Balasubramanian
27
16
0
28 Dec 2020
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via Adversarial Fine-tuning
Ahmadreza Jeddi
M. Shafiee
A. Wong
AAML
38
38
0
25 Dec 2020
Defence against adversarial attacks using classical and quantum-enhanced Boltzmann machines
Aidan Kehoe
P. Wittek
Yanbo Xue
Alejandro Pozas-Kerstjens
AAML
37
7
0
21 Dec 2020
On Success and Simplicity: A Second Look at Transferable Targeted Attacks
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
46
122
0
21 Dec 2020
A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacks
Qingsong Yao
Zecheng He
Yi Lin
Kai Ma
Yefeng Zheng
S. Kevin Zhou
AAML
MedIm
27
16
0
17 Dec 2020
Characterizing the Evasion Attackability of Multi-label Classifiers
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
19
10
0
17 Dec 2020
A Closer Look at the Robustness of Vision-and-Language Pre-trained Models
Linjie Li
Zhe Gan
Jingjing Liu
VLM
33
42
0
15 Dec 2020
Amata: An Annealing Mechanism for Adversarial Training Acceleration
Nanyang Ye
Qianxiao Li
Xiao-Yun Zhou
Zhanxing Zhu
AAML
34
15
0
15 Dec 2020
Hypothesis Disparity Regularized Mutual Information Maximization
Qicheng Lao
Xiang Jiang
Mohammad Havaei
33
24
0
15 Dec 2020
Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints
X. Li
Xiangrui Li
Deng Pan
D. Zhu
AAML
21
17
0
14 Dec 2020
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
27
1
0
14 Dec 2020
Mitigating the Impact of Adversarial Attacks in Very Deep Networks
Mohammed Hassanin
Ibrahim Radwan
Nour Moustafa
M. Tahtali
Neeraj Kumar
AAML
18
5
0
08 Dec 2020
Locally optimal detection of stochastic targeted universal adversarial perturbations
Amish Goel
P. Moulin
AAML
19
2
0
08 Dec 2020
Backpropagating Linearly Improves Transferability of Adversarial Examples
Yiwen Guo
Qizhang Li
Hao Chen
FedML
AAML
34
115
0
07 Dec 2020
Evaluating adversarial robustness in simulated cerebellum
Liu Yuezhang
Bo Li
Qifeng Chen
AAML
9
0
0
05 Dec 2020
Towards Natural Robustness Against Adversarial Examples
Haoyu Chu
Shikui Wei
Yao-Min Zhao
AAML
19
1
0
04 Dec 2020
Previous
1
2
3
...
14
15
16
...
25
26
27
Next