ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04692
7
2

Locally optimal detection of stochastic targeted universal adversarial perturbations

8 December 2020
Amish Goel
P. Moulin
    AAML
ArXivPDFHTML
Abstract

Deep learning image classifiers are known to be vulnerable to small adversarial perturbations of input images. In this paper, we derive the locally optimal generalized likelihood ratio test (LO-GLRT) based detector for detecting stochastic targeted universal adversarial perturbations (UAPs) of the classifier inputs. We also describe a supervised training method to learn the detector's parameters, and demonstrate better performance of the detector compared to other detection methods on several popular image classification datasets.

View on arXiv
Comments on this paper