ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07057
  4. Cited By
Masked Autoregressive Flow for Density Estimation

Masked Autoregressive Flow for Density Estimation

19 May 2017
George Papamakarios
Theo Pavlakou
Iain Murray
ArXivPDFHTML

Papers citing "Masked Autoregressive Flow for Density Estimation"

50 / 52 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
63
0
0
19 May 2025
Distilling Two-Timed Flow Models by Separately Matching Initial and Terminal Velocities
Distilling Two-Timed Flow Models by Separately Matching Initial and Terminal Velocities
Pramook Khungurn
Pratch Piyawongwisal
Sira Sriswadi
Supasorn Suwajanakorn
93
0
0
02 May 2025
Graphical Transformation Models
Graphical Transformation Models
Matthias Herp
Johannes Brachem
Michael Altenbuchinger
Thomas Kneib
135
0
0
22 Mar 2025
Synthetic Tabular Data Generation for Imbalanced Classification: The Surprising Effectiveness of an Overlap Class
Synthetic Tabular Data Generation for Imbalanced Classification: The Surprising Effectiveness of an Overlap Class
Annie D'souza
Swetha M
Sunita Sarawagi
120
1
0
20 Feb 2025
Robust and highly scalable estimation of directional couplings from time-shifted signals
Robust and highly scalable estimation of directional couplings from time-shifted signals
Luca Ambrogioni
Louis Rouillard
Demian Wassermann
119
0
0
28 Jan 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
159
0
0
20 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
201
2
0
17 Jan 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
72
2
0
03 Jan 2025
Simulation-based Inference for Cardiovascular Models
Simulation-based Inference for Cardiovascular Models
Antoine Wehenkel
Laura Manduchi
Jens Behrmann
Guillermo Sapiro
Andrew C. Miller
Marco Cuturi
Ozan Sener
Marco Cuturi
J. Jacobsen
170
9
0
31 Dec 2024
Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Sandeep Nagar
Girish Varma
TPM
60
0
0
18 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
156
4
0
23 Aug 2024
Sum of Squares Circuits
Sum of Squares Circuits
Lorenzo Loconte
Stefan Mengel
Antonio Vergari
TPM
93
8
0
21 Aug 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
80
2
0
29 Jul 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
153
0
0
22 Jul 2024
Information Theoretic Text-to-Image Alignment
Information Theoretic Text-to-Image Alignment
Chao Wang
Giulio Franzese
A. Finamore
Massimo Gallo
Pietro Michiardi
104
0
0
31 May 2024
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Aastha Acharya
Caleb Lee
Marissa DÁlonzo
Jared Shamwell
Nisar R. Ahmed
Rebecca L. Russell
BDL
77
0
0
30 May 2024
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Patryk Wielopolski
Oleksii Furman
Łukasz Lenkiewicz
Jerzy Stefanowski
Maciej Ziȩba
54
0
0
27 May 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
136
3
0
29 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
110
8
0
08 Apr 2024
Diffusion Model-Based Image Editing: A Survey
Diffusion Model-Based Image Editing: A Survey
Yi Huang
Jiancheng Huang
Yifan Liu
Mingfu Yan
Jiaxi Lv
Jianzhuang Liu
Wei Xiong
He Zhang
Liangliang Cao
Liangliang Cao
EGVM
108
96
0
27 Feb 2024
Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
Yijun Li
Cheuk Hang Leung
Qi Wu
AI4TS
62
1
0
15 Jun 2023
Computing high-dimensional optimal transport by flow neural networks
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
78
5
0
19 May 2023
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
70
180
0
06 Nov 2019
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
185
858
0
28 Nov 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
77
939
0
19 Jan 2017
Maximum Entropy Flow Networks
Maximum Entropy Flow Networks
Gabriel Loaiza-Ganem
Yuanjun Gao
John P. Cunningham
50
27
0
12 Jan 2017
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
165
143
0
31 Oct 2016
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
352
7,381
0
12 Sep 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
169
2,503
0
16 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
107
1,816
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
233
3,689
0
26 May 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
134
158
0
20 May 2016
Theano: A Python framework for fast computation of mathematical
  expressions
Theano: A Python framework for fast computation of mathematical expressions
The Theano Development Team
Rami Al-Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermüller
...
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
168
2,339
0
09 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
70
314
0
07 May 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
135
110
0
22 Feb 2016
Parameterized Machine Learning for High-Energy Physics
Parameterized Machine Learning for High-Energy Physics
Pierre Baldi
Kyle Cranmer
Taylor Faucett
Peter Sadowski
D. Whiteson
AI4CE
PINN
67
240
0
28 Jan 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
433
2,566
0
25 Jan 2016
Density Modeling of Images using a Generalized Normalization
  Transformation
Density Modeling of Images using a Generalized Normalization Transformation
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
41
386
0
19 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
98
1,145
0
05 Nov 2015
Generative Image Modeling Using Spatial LSTMs
Generative Image Modeling Using Spatial LSTMs
Lucas Theis
Matthias Bethge
GAN
VLM
58
200
0
10 Jun 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
61
147
0
10 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
286
4,167
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
148
867
0
12 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
413
43,234
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
118
2,256
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
412
16,947
0
20 Dec 2013
A Deep and Tractable Density Estimator
A Deep and Tractable Density Estimator
Benigno Uria
Iain Murray
Hugo Larochelle
BDL
91
193
0
07 Oct 2013
RNADE: The real-valued neural autoregressive density-estimator
RNADE: The real-valued neural autoregressive density-estimator
Benigno Uria
Iain Murray
Hugo Larochelle
92
238
0
02 Jun 2013
High-Dimensional Probability Estimation with Deep Density Models
High-Dimensional Probability Estimation with Deep Density Models
Oren Rippel
Ryan P. Adams
141
124
0
20 Feb 2013
12
Next