ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.05796
  4. Cited By
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

19 April 2017
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
    MILMFAtt
ArXiv (abs)PDFHTML

Papers citing "Network Dissection: Quantifying Interpretability of Deep Visual Representations"

50 / 787 papers shown
Title
Perceptual Group Tokenizer: Building Perception with Iterative Grouping
Perceptual Group Tokenizer: Building Perception with Iterative Grouping
Zhiwei Deng
Ting Chen
Yang Li
ViTVLM
75
2
0
30 Nov 2023
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with
  Prototypical Concept-based Explanations
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations
Maximilian Dreyer
Reduan Achtibat
Wojciech Samek
Sebastian Lapuschkin
60
12
0
28 Nov 2023
A Cross Attention Approach to Diagnostic Explainability using Clinical
  Practice Guidelines for Depression
A Cross Attention Approach to Diagnostic Explainability using Clinical Practice Guidelines for Depression
Sumit Dalal
Deepa Tilwani
Kaushik Roy
Manas Gaur
Sarika Jain
V. Shalin
Amit P. Sheth
84
7
0
23 Nov 2023
Labeling Neural Representations with Inverse Recognition
Labeling Neural Representations with Inverse Recognition
Kirill Bykov
Laura Kopf
Shinichi Nakajima
Marius Kloft
Marina M.-C. Höhne
BDL
122
20
0
22 Nov 2023
Representing visual classification as a linear combination of words
Representing visual classification as a linear combination of words
Shobhit Agarwal
Yevgeniy R. Semenov
William Lotter
95
1
0
18 Nov 2023
Finding and Editing Multi-Modal Neurons in Pre-Trained Transformers
Finding and Editing Multi-Modal Neurons in Pre-Trained Transformers
Haowen Pan
Yixin Cao
Xiaozhi Wang
Xun Yang
Meng Wang
KELM
108
27
0
13 Nov 2023
Towards A Unified Neural Architecture for Visual Recognition and
  Reasoning
Towards A Unified Neural Architecture for Visual Recognition and Reasoning
Calvin Luo
Boqing Gong
Ting Chen
Chen Sun
OCLObjD
52
1
0
10 Nov 2023
A Simple Interpretable Transformer for Fine-Grained Image Classification
  and Analysis
A Simple Interpretable Transformer for Fine-Grained Image Classification and Analysis
Dipanjyoti Paul
A. Chowdhury
Xinqi Xiong
Feng-Ju Chang
David Carlyn
...
Daniel Rubenstein
Charles V. Stewart
Tanya Berger-Wolf
Yu-Chuan Su
Wei-Lun Chao
ViT
103
18
0
07 Nov 2023
InterVLS: Interactive Model Understanding and Improvement with
  Vision-Language Surrogates
InterVLS: Interactive Model Understanding and Improvement with Vision-Language Surrogates
Jinbin Huang
Wenbin He
Liangke Gou
Liu Ren
Chris Bryan
VLM
54
1
0
06 Nov 2023
SoK: Memorisation in machine learning
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
99
1
0
06 Nov 2023
Explaining the Decisions of Deep Policy Networks for Robotic
  Manipulations
Explaining the Decisions of Deep Policy Networks for Robotic Manipulations
Seongun Kim
Jaesik Choi
48
4
0
30 Oct 2023
Towards a fuller understanding of neurons with Clustered Compositional
  Explanations
Towards a fuller understanding of neurons with Clustered Compositional Explanations
Biagio La Rosa
Leilani H. Gilpin
Roberto Capobianco
58
9
0
27 Oct 2023
Understanding Parameter Saliency via Extreme Value Theory
Understanding Parameter Saliency via Extreme Value Theory
Shuo Wang
Issei Sato
AAMLFAtt
34
0
0
27 Oct 2023
This Reads Like That: Deep Learning for Interpretable Natural Language
  Processing
This Reads Like That: Deep Learning for Interpretable Natural Language Processing
Claudio Fanconi
Moritz Vandenhirtz
Severin Husmann
Julia E. Vogt
FAtt
70
2
0
25 Oct 2023
Driving through the Concept Gridlock: Unraveling Explainability
  Bottlenecks in Automated Driving
Driving through the Concept Gridlock: Unraveling Explainability Bottlenecks in Automated Driving
J. Echterhoff
An Yan
Kyungtae Han
Amr Abdelraouf
Rohit Gupta
Julian McAuley
60
7
0
25 Oct 2023
Corrupting Neuron Explanations of Deep Visual Features
Corrupting Neuron Explanations of Deep Visual Features
Divyansh Srivastava
Tuomas P. Oikarinen
Tsui-Wei Weng
FAttAAML
44
2
0
25 Oct 2023
Instance-wise Linearization of Neural Network for Model Interpretation
Instance-wise Linearization of Neural Network for Model Interpretation
Zhimin Li
Shusen Liu
B. Kailkhura
Timo Bremer
Valerio Pascucci
MILMFAtt
62
0
0
25 Oct 2023
Zone Evaluation: Revealing Spatial Bias in Object Detection
Zone Evaluation: Revealing Spatial Bias in Object Detection
Zhaohui Zheng
Yuming Chen
Qibin Hou
Xiang Li
Ping Wang
Ming-Ming Cheng
ObjD
116
4
0
20 Oct 2023
Understanding Addition in Transformers
Understanding Addition in Transformers
Philip Quirke
Fazl Barez
153
19
0
19 Oct 2023
Frozen Transformers in Language Models Are Effective Visual Encoder
  Layers
Frozen Transformers in Language Models Are Effective Visual Encoder Layers
Ziqi Pang
Ziyang Xie
Yunze Man
Yu-Xiong Wang
146
27
0
19 Oct 2023
Getting aligned on representational alignment
Getting aligned on representational alignment
Ilia Sucholutsky
Lukas Muttenthaler
Adrian Weller
Andi Peng
Andreea Bobu
...
Thomas Unterthiner
Andrew Kyle Lampinen
Klaus-Robert Muller
M. Toneva
Thomas Griffiths
158
93
0
18 Oct 2023
Removing Spurious Concepts from Neural Network Representations via Joint
  Subspace Estimation
Removing Spurious Concepts from Neural Network Representations via Joint Subspace Estimation
Floris Holstege
Bram Wouters
Noud van Giersbergen
C. Diks
101
2
0
18 Oct 2023
From Neural Activations to Concepts: A Survey on Explaining Concepts in
  Neural Networks
From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks
Jae Hee Lee
Sergio Lanza
Stefan Wermter
73
10
0
18 Oct 2023
Interpreting and Controlling Vision Foundation Models via Text
  Explanations
Interpreting and Controlling Vision Foundation Models via Text Explanations
Haozhe Chen
Junfeng Yang
Carl Vondrick
Chengzhi Mao
83
3
0
16 Oct 2023
Automated Natural Language Explanation of Deep Visual Neurons with Large
  Models
Automated Natural Language Explanation of Deep Visual Neurons with Large Models
Chenxu Zhao
Wei Qian
Yucheng Shi
Mengdi Huai
Ninghao Liu
44
3
0
16 Oct 2023
What Do Deep Saliency Models Learn about Visual Attention?
What Do Deep Saliency Models Learn about Visual Attention?
Shi Chen
Ming Jiang
Qi Zhao
FAtt
35
2
0
14 Oct 2023
Learning Transferable Conceptual Prototypes for Interpretable
  Unsupervised Domain Adaptation
Learning Transferable Conceptual Prototypes for Interpretable Unsupervised Domain Adaptation
Junyu Gao
Xinhong Ma
Changsheng Xu
107
5
0
12 Oct 2023
NeuroInspect: Interpretable Neuron-based Debugging Framework through
  Class-conditional Visualizations
NeuroInspect: Interpretable Neuron-based Debugging Framework through Class-conditional Visualizations
Yeong-Joon Ju
Ji-Hoon Park
Seong-Whan Lee
AAML
46
0
0
11 Oct 2023
Latent Diffusion Counterfactual Explanations
Latent Diffusion Counterfactual Explanations
Karim Farid
Simon Schrodi
Max Argus
Thomas Brox
DiffM
99
14
0
10 Oct 2023
The Importance of Prompt Tuning for Automated Neuron Explanations
The Importance of Prompt Tuning for Automated Neuron Explanations
Justin Lee
Tuomas P. Oikarinen
Arjun Chatha
Keng-Chi Chang
Yilan Chen
Tsui-Wei Weng
LRM
68
8
0
09 Oct 2023
DiPS: Discriminative Pseudo-Label Sampling with Self-Supervised
  Transformers for Weakly Supervised Object Localization
DiPS: Discriminative Pseudo-Label Sampling with Self-Supervised Transformers for Weakly Supervised Object Localization
Shakeeb Murtaza
Soufiane Belharbi
M. Pedersoli
Aydin Sarraf
Eric Granger
WSOL
121
9
0
09 Oct 2023
Deep Concept Removal
Deep Concept Removal
Yegor Klochkov
Jean-François Ton
Ruocheng Guo
Yang Liu
Hang Li
50
0
0
09 Oct 2023
DISCOVER: Making Vision Networks Interpretable via Competition and
  Dissection
DISCOVER: Making Vision Networks Interpretable via Competition and Dissection
Konstantinos P. Panousis
S. Chatzis
79
5
0
07 Oct 2023
Copy Suppression: Comprehensively Understanding an Attention Head
Copy Suppression: Comprehensively Understanding an Attention Head
Callum McDougall
Arthur Conmy
Cody Rushing
Thomas McGrath
Neel Nanda
MILM
73
46
0
06 Oct 2023
Attributing Learned Concepts in Neural Networks to Training Data
Attributing Learned Concepts in Neural Networks to Training Data
Nicholas Konz
Charles Godfrey
Madelyn Shapiro
Jonathan Tu
Henry Kvinge
Davis Brown
TDIFAtt
32
1
0
04 Oct 2023
Coarse-to-Fine Concept Bottleneck Models
Coarse-to-Fine Concept Bottleneck Models
Konstantinos P. Panousis
Dino Ienco
Diego Marcos
85
8
0
03 Oct 2023
H-InDex: Visual Reinforcement Learning with Hand-Informed
  Representations for Dexterous Manipulation
H-InDex: Visual Reinforcement Learning with Hand-Informed Representations for Dexterous Manipulation
Yanjie Ze
Yuyao Liu
Ruizhe Shi
Jiaxin Qin
Zhecheng Yuan
Jiashun Wang
Huazhe Xu
107
1
0
02 Oct 2023
Faster and Accurate Neural Networks with Semantic Inference
Faster and Accurate Neural Networks with Semantic Inference
Sazzad Sayyed
Jonathan D. Ashdown
Francesco Restuccia
71
0
0
02 Oct 2023
Prototype Generation: Robust Feature Visualisation for Data Independent
  Interpretability
Prototype Generation: Robust Feature Visualisation for Data Independent Interpretability
Ziyin Li
Bao Feng
64
1
0
29 Sep 2023
Learning to Receive Help: Intervention-Aware Concept Embedding Models
Learning to Receive Help: Intervention-Aware Concept Embedding Models
M. Zarlenga
Katherine M. Collins
Krishnamurthy Dvijotham
Adrian Weller
Z. Shams
M. Jamnik
91
27
0
29 Sep 2023
Explaining Deep Face Algorithms through Visualization: A Survey
Explaining Deep Face Algorithms through Visualization: A Survey
Thrupthi Ann
S. M. I. C. V. Balasubramanian
M. Jawahar
CVBM
61
1
0
26 Sep 2023
FIND: A Function Description Benchmark for Evaluating Interpretability
  Methods
FIND: A Function Description Benchmark for Evaluating Interpretability Methods
Sarah Schwettmann
Tamar Rott Shaham
Joanna Materzyñska
Neil Chowdhury
Shuang Li
Jacob Andreas
David Bau
Antonio Torralba
56
22
0
07 Sep 2023
DeViL: Decoding Vision features into Language
DeViL: Decoding Vision features into Language
Meghal Dani
Isabel Rio-Torto
Stephan Alaniz
Zeynep Akata
VLM
82
8
0
04 Sep 2023
Unsupervised discovery of Interpretable Visual Concepts
Unsupervised discovery of Interpretable Visual Concepts
Caroline Mazini Rodrigues
Nicolas Boutry
Laurent Najman
FAtt
58
2
0
31 Aug 2023
Patch Is Not All You Need
Patch Is Not All You Need
Chang-bo Li
Jie Zhang
Yang Wei
Zhilong Ji
Jinfeng Bai
Shiguang Shan
ViT
69
2
0
21 Aug 2023
Dissecting RGB-D Learning for Improved Multi-modal Fusion
Dissecting RGB-D Learning for Improved Multi-modal Fusion
Hao Chen
Hao Zhou
Yunshu Zhang
Zheng Lin
Yongjian Deng
125
1
0
19 Aug 2023
Backdoor Federated Learning by Poisoning Backdoor-Critical Layers
Backdoor Federated Learning by Poisoning Backdoor-Critical Layers
Haomin Zhuang
Mingxian Yu
Hao Wang
Yang Hua
Jian Li
Xu Yuan
FedML
61
15
0
08 Aug 2023
Improving Generalization of Image Captioning with Unsupervised Prompt
  Learning
Improving Generalization of Image Captioning with Unsupervised Prompt Learning
Hongchen Wei
Zhenzhong Chen
VLM
79
3
0
05 Aug 2023
A Multidimensional Analysis of Social Biases in Vision Transformers
A Multidimensional Analysis of Social Biases in Vision Transformers
Jannik Brinkmann
Paul Swoboda
Christian Bartelt
58
8
0
03 Aug 2023
Multimodal Neurons in Pretrained Text-Only Transformers
Multimodal Neurons in Pretrained Text-Only Transformers
Sarah Schwettmann
Neil Chowdhury
Samuel J. Klein
David Bau
Antonio Torralba
MILM
92
32
0
03 Aug 2023
Previous
12345...141516
Next