ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17144
23
1

Prototype Generation: Robust Feature Visualisation for Data Independent Interpretability

29 September 2023
Ziyin Li
Bao Feng
ArXivPDFHTML
Abstract

We introduce Prototype Generation, a stricter and more robust form of feature visualisation for model-agnostic, data-independent interpretability of image classification models. We demonstrate its ability to generate inputs that result in natural activation paths, countering previous claims that feature visualisation algorithms are untrustworthy due to the unnatural internal activations. We substantiate these claims by quantitatively measuring similarity between the internal activations of our generated prototypes and natural images. We also demonstrate how the interpretation of generated prototypes yields important insights, highlighting spurious correlations and biases learned by models which quantitative methods over test-sets cannot identify.

View on arXiv
Comments on this paper