Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.05796
Cited By
Network Dissection: Quantifying Interpretability of Deep Visual Representations
19 April 2017
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Network Dissection: Quantifying Interpretability of Deep Visual Representations"
37 / 787 papers shown
Title
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
182
826
0
02 Feb 2018
Interpreting CNNs via Decision Trees
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
FAtt
104
324
0
01 Feb 2018
ReNN: Rule-embedded Neural Networks
Hu Wang
AI4TS
38
15
0
30 Jan 2018
Considerations When Learning Additive Explanations for Black-Box Models
S. Tan
Giles Hooker
Paul Koch
Albert Gordo
R. Caruana
FAtt
118
24
0
26 Jan 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
103
541
0
21 Jan 2018
Can Computers Create Art?
Aaron Hertzmann
130
154
0
13 Jan 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
103
264
0
10 Jan 2018
What have we learned from deep representations for action recognition?
Christoph Feichtenhofer
A. Pinz
Richard P. Wildes
Andrew Zisserman
SSL
88
47
0
04 Jan 2018
Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Heyi Li
Yunke Tian
Klaus Mueller
Xin Chen
FAtt
77
42
0
22 Dec 2017
Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning
Andrew Owens
Jiajun Wu
Josh H. McDermott
William T. Freeman
Antonio Torralba
SSL
93
176
0
20 Dec 2017
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
José Oramas
Kaili Wang
Tinne Tuytelaars
XAI
FAtt
47
62
0
18 Dec 2017
Network Analysis for Explanation
Hiroshi Kuwajima
Masayuki Tanaka
FAtt
29
3
0
07 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
274
1,852
0
30 Nov 2017
Patch Correspondences for Interpreting Pixel-level CNNs
Victor Fragoso
Chunhui Liu
Aayush Bansal
Deva Ramanan
50
3
0
29 Nov 2017
Train, Diagnose and Fix: Interpretable Approach for Fine-grained Action Recognition
Jingxuan Hou
Tae Soo Kim
A. Reiter
18
1
0
22 Nov 2017
Few-shot Learning by Exploiting Visual Concepts within CNNs
Boyang Deng
Qing Liu
Siyuan Qiao
Alan Yuille
76
4
0
22 Nov 2017
The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching
Qian Yu
Xiaobin Chang
Yi-Zhe Song
Tao Xiang
Timothy M. Hospedales
106
91
0
22 Nov 2017
Relating Input Concepts to Convolutional Neural Network Decisions
Ning Xie
Md Kamruzzaman Sarker
Derek Doran
Pascal Hitzler
M. Raymer
FAtt
63
15
0
21 Nov 2017
AOGNets: Compositional Grammatical Architectures for Deep Learning
Xilai Li
Xi Song
Tianfu Wu
72
26
0
15 Nov 2017
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
76
325
0
15 Nov 2017
Towards Interpretable R-CNN by Unfolding Latent Structures
Tianfu Wu
Wei Sun
Xilai Li
Xi Song
Yangqiu Song
ObjD
62
20
0
14 Nov 2017
D-PCN: Parallel Convolutional Networks for Image Recognition via a Discriminator
Shiqi Yang
G. Peng
26
2
0
12 Nov 2017
Discovery Radiomics with CLEAR-DR: Interpretable Computer Aided Diagnosis of Diabetic Retinopathy
Devinder Kumar
Graham W. Taylor
Alexander Wong
MedIm
48
36
0
29 Oct 2017
Feedback-prop: Convolutional Neural Network Inference under Partial Evidence
Tianlu Wang
Kota Yamaguchi
Vicente Ordonez
92
11
0
23 Oct 2017
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
132
785
0
02 Oct 2017
What Does Explainable AI Really Mean? A New Conceptualization of Perspectives
Derek Doran
Sarah Schulz
Tarek R. Besold
XAI
68
440
0
02 Oct 2017
Verifying Properties of Binarized Deep Neural Networks
Nina Narodytska
S. Kasiviswanathan
L. Ryzhyk
Shmuel Sagiv
T. Walsh
AAML
117
217
0
19 Sep 2017
Embedding Deep Networks into Visual Explanations
Zhongang Qi
Saeed Khorram
Fuxin Li
41
27
0
15 Sep 2017
Learning Functional Causal Models with Generative Neural Networks
Hugo Jair Escalante
Sergio Escalera
Xavier Baro
Isabelle M Guyon
Umut Güçlü
Marcel van Gerven
CML
BDL
107
108
0
15 Sep 2017
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
Yinpeng Dong
Hang Su
Jun Zhu
Fan Bao
AAML
143
129
0
18 Aug 2017
Interpreting CNN Knowledge via an Explanatory Graph
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
FAtt
GNN
SSL
83
243
0
05 Aug 2017
An Analysis of Human-centered Geolocation
Kaili Wang
Yu-Hui Huang
José Oramas
Luc Van Gool
Tinne Tuytelaars
60
6
0
10 Jul 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
299
2,280
0
24 Jun 2017
Patchnet: Interpretable Neural Networks for Image Classification
Adityanarayanan Radhakrishnan
Charles Durham
Ali Soylemezoglu
Caroline Uhler
FAtt
38
12
0
23 May 2017
Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification
Vincent Andrearczyk
P. Whelan
56
65
0
16 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
629
20,278
0
07 Oct 2016
Action Classification via Concepts and Attributes
Amir Rosenfeld
S. Ullman
84
11
0
25 May 2016
Previous
1
2
3
...
14
15
16