ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.04428
  4. Cited By
Parallel Multi Channel Convolution using General Matrix Multiplication

Parallel Multi Channel Convolution using General Matrix Multiplication

6 April 2017
Aravind Vasudevan
Andrew Anderson
David Gregg
ArXivPDFHTML

Papers citing "Parallel Multi Channel Convolution using General Matrix Multiplication"

20 / 20 papers shown
Title
BF-IMNA: A Bit Fluid In-Memory Neural Architecture for Neural Network
  Acceleration
BF-IMNA: A Bit Fluid In-Memory Neural Architecture for Neural Network Acceleration
M. Rakka
Rachid Karami
A. Eltawil
M. Fouda
Fadi J. Kurdahi
MQ
47
1
0
03 Nov 2024
Optimizing Sparse Convolution on GPUs with CUDA for 3D Point Cloud
  Processing in Embedded Systems
Optimizing Sparse Convolution on GPUs with CUDA for 3D Point Cloud Processing in Embedded Systems
Chester Luo
Kevin Lai
3DPC
36
0
0
12 Feb 2024
All Rivers Run to the Sea: Private Learning with Asymmetric Flows
All Rivers Run to the Sea: Private Learning with Asymmetric Flows
Yue Niu
Ramy E. Ali
Saurav Prakash
Salman Avestimehr
FedML
38
2
0
05 Dec 2023
Sliding Window Sum Algorithms for Deep Neural Networks
Sliding Window Sum Algorithms for Deep Neural Networks
R. Snytsar
TPM
AI4TS
28
3
0
25 May 2023
OLLIE: Derivation-based Tensor Program Optimizer
OLLIE: Derivation-based Tensor Program Optimizer
Liyan Zheng
Haojie Wang
Jidong Zhai
Muyan Hu
Zixuan Ma
Tuowei Wang
Shizhi Tang
Lei Xie
Kezhao Huang
Zhihao Jia
46
3
0
02 Aug 2022
Lipschitz Bound Analysis of Neural Networks
Lipschitz Bound Analysis of Neural Networks
S. Bose
AAML
42
0
0
14 Jul 2022
Neuro-Symbolic AI: An Emerging Class of AI Workloads and their
  Characterization
Neuro-Symbolic AI: An Emerging Class of AI Workloads and their Characterization
Zachary Susskind
Bryce Arden
L. John
Patrick A Stockton
E. John
NAI
30
41
0
13 Sep 2021
Content-Aware Convolutional Neural Networks
Content-Aware Convolutional Neural Networks
Yong Guo
Yaofo Chen
Mingkui Tan
Kui Jia
Jian Chen
Jingdong Wang
36
8
0
30 Jun 2021
Post-Training Sparsity-Aware Quantization
Post-Training Sparsity-Aware Quantization
Gil Shomron
F. Gabbay
Samer Kurzum
U. Weiser
MQ
46
33
0
23 May 2021
Efficient and Generic 1D Dilated Convolution Layer for Deep Learning
Efficient and Generic 1D Dilated Convolution Layer for Deep Learning
Narendra Chaudhary
Sanchit Misra
Dhiraj D. Kalamkar
A. Heinecke
E. Georganas
Barukh Ziv
Menachem Adelman
Bharat Kaul
32
9
0
16 Apr 2021
Extending Sparse Tensor Accelerators to Support Multiple Compression
  Formats
Extending Sparse Tensor Accelerators to Support Multiple Compression Formats
Eric Qin
Geonhwa Jeong
William Won
Sheng-Chun Kao
Hyoukjun Kwon
Sudarshan Srinivasan
Dipankar Das
G. Moon
S. Rajamanickam
T. Krishna
35
18
0
18 Mar 2021
Hardware and Software Optimizations for Accelerating Deep Neural
  Networks: Survey of Current Trends, Challenges, and the Road Ahead
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Mohamed Bennai
BDL
64
140
0
21 Dec 2020
Accelerating Sparse Matrix-Matrix Multiplication with GPU Tensor Cores
Accelerating Sparse Matrix-Matrix Multiplication with GPU Tensor Cores
Orestis Zachariadis
Nitin Satpute
Juan Gómez Luna
J. Olivares
22
60
0
29 Sep 2020
ICA-UNet: ICA Inspired Statistical UNet for Real-time 3D Cardiac Cine
  MRI Segmentation
ICA-UNet: ICA Inspired Statistical UNet for Real-time 3D Cardiac Cine MRI Segmentation
Tianchen Wang
Xiaowei Xu
Jinjun Xiong
Qianjun Jia
Haiyun Yuan
Meiping Huang
Jian Zhuang
Yiyu Shi
22
21
0
18 Jul 2020
Hardware Acceleration of Sparse and Irregular Tensor Computations of ML
  Models: A Survey and Insights
Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey and Insights
Shail Dave
Riyadh Baghdadi
Tony Nowatzki
Sasikanth Avancha
Aviral Shrivastava
Baoxin Li
64
82
0
02 Jul 2020
FPGA-based Accelerators of Deep Learning Networks for Learning and
  Classification: A Review
FPGA-based Accelerators of Deep Learning Networks for Learning and Classification: A Review
Ahmad Shawahna
S. M. Sait
A. El-Maleh
28
372
0
01 Jan 2019
Anatomy Of High-Performance Deep Learning Convolutions On SIMD
  Architectures
Anatomy Of High-Performance Deep Learning Convolutions On SIMD Architectures
E. Georganas
Sasikanth Avancha
K. Banerjee
Dhiraj D. Kalamkar
G. Henry
Hans Pabst
A. Heinecke
BDL
22
105
0
16 Aug 2018
A model-driven approach for a new generation of adaptive libraries
A model-driven approach for a new generation of adaptive libraries
Marco Cianfriglia
Damiano Perri
C. Nugteren
Anton Lokhmotov
G. Fursin
29
14
0
19 Jun 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth
  Concurrency Analysis
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
704
0
26 Feb 2018
Optimal DNN Primitive Selection with Partitioned Boolean Quadratic
  Programming
Optimal DNN Primitive Selection with Partitioned Boolean Quadratic Programming
Andrew Anderson
David Gregg
32
34
0
03 Oct 2017
1