ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02030
  4. Cited By
Using stacking to average Bayesian predictive distributions

Using stacking to average Bayesian predictive distributions

6 April 2017
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
ArXivPDFHTML

Papers citing "Using stacking to average Bayesian predictive distributions"

20 / 20 papers shown
Title
MODL: Multilearner Online Deep Learning
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris N. Oreshkin
Mark J. Coates
34
1
0
28 May 2024
Dynamic Online Ensembles of Basis Expansions
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
30
3
0
02 May 2024
Automating Model Comparison in Factor Graphs
Automating Model Comparison in Factor Graphs
Bart Van Erp
Wouter W. L. Nuijten
T. V. D. Laar
Bert De Vries
16
1
0
09 Jun 2023
Assessing inter-rater reliability with heterogeneous variance components
  models: Flexible approach accounting for contextual variables
Assessing inter-rater reliability with heterogeneous variance components models: Flexible approach accounting for contextual variables
Patrícia Martinková
František Bartoš
M. Brabec
13
8
0
05 Jul 2022
A review of machine learning concepts and methods for addressing
  challenges in probabilistic hydrological post-processing and forecasting
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
27
28
0
17 Jun 2022
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
  Processes to Hypothesis Learning
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian Processes to Hypothesis Learning
M. Ziatdinov
Yongtao Liu
K. Kelley
Rama K Vasudevan
Sergei V. Kalinin
AI4CE
39
49
0
30 May 2022
Forecast combinations: an over 50-year review
Forecast combinations: an over 50-year review
Xiaoqian Wang
Rob J. Hyndman
Feng Li
Yanfei Kang
AI4TS
30
139
0
09 May 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
63
17
0
22 Feb 2022
Local Prediction Pools
Local Prediction Pools
O. Oelrich
M. Villani
Sebastian Ankargren
17
4
0
14 Dec 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
74
16
0
19 Oct 2020
Cross-study learning for generalist and specialist predictions
Cross-study learning for generalist and specialist predictions
Boyu Ren
Prasad Patil
Francesca Dominici
Giovanni Parmigiani
L. Trippa
17
10
0
24 Jul 2020
Boba: Authoring and Visualizing Multiverse Analyses
Boba: Authoring and Visualizing Multiverse Analyses
Yang Liu
Alex Kale
Tim Althoff
Jeffrey Heer
21
47
0
10 Jul 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
When are Bayesian model probabilities overconfident?
When are Bayesian model probabilities overconfident?
O. Oelrich
S. Ding
Måns Magnusson
Aki Vehtari
M. Villani
11
17
0
09 Mar 2020
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
J. Liu
John Paisley
M. Kioumourtzoglou
B. Coull
UQCV
UD
PER
17
83
0
11 Nov 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
29
8
0
23 May 2019
Projective Inference in High-dimensional Problems: Prediction and
  Feature Selection
Projective Inference in High-dimensional Problems: Prediction and Feature Selection
Juho Piironen
Markus Paasiniemi
Aki Vehtari
14
94
0
04 Oct 2018
Bayesian comparison of latent variable models: Conditional vs marginal
  likelihoods
Bayesian comparison of latent variable models: Conditional vs marginal likelihoods
Edgar C. Merkle
Daniel Furr
S. Rabe-Hesketh
10
71
0
13 Feb 2018
Bayesian computing with INLA: new features
Bayesian computing with INLA: new features
Thiago G. Martins
Daniel P. Simpson
Till Mossakowski
H. Rue
BDL
117
556
0
01 Oct 2012
1