Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.01701
Cited By
Learning Certifiably Optimal Rule Lists for Categorical Data
6 April 2017
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Certifiably Optimal Rule Lists for Categorical Data"
50 / 101 papers shown
Title
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
19
36
0
14 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
30
51
0
03 Sep 2020
Counterfactual Explanations for Machine Learning on Multivariate Time Series Data
E. Ates
Burak Aksar
V. Leung
A. Coskun
AI4TS
51
65
0
25 Aug 2020
Tackling COVID-19 through Responsible AI Innovation: Five Steps in the Right Direction
David Leslie
27
67
0
15 Aug 2020
Safety design concepts for statistical machine learning components toward accordance with functional safety standards
Akihisa Morikawa
Yamato Matsubara
12
3
0
04 Aug 2020
Diverse Rule Sets
Guangyi Zhang
Aristides Gionis
13
19
0
17 Jun 2020
Generalized and Scalable Optimal Sparse Decision Trees
Jimmy J. Lin
Chudi Zhong
Diane Hu
Cynthia Rudin
Margo Seltzer
11
139
0
15 Jun 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
59
84
0
08 May 2020
Layerwise Knowledge Extraction from Deep Convolutional Networks
S. Odense
Artur Garcez
FAtt
16
9
0
19 Mar 2020
Vulnerabilities of Connectionist AI Applications: Evaluation and Defence
Christian Berghoff
Matthias Neu
Arndt von Twickel
AAML
24
23
0
18 Mar 2020
Interpretable Companions for Black-Box Models
Dan-qing Pan
Tong Wang
Satoshi Hara
FaML
17
8
0
10 Feb 2020
A Framework for Democratizing AI
Shakkeel Ahmed
Ravi Mula
S. Dhavala
27
9
0
01 Jan 2020
From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning (Kay R. Amel group)
Zied Bouraoui
Antoine Cornuéjols
Thierry Denoeux
Sebastien Destercke
Didier Dubois
...
Jérôme Mengin
H. Prade
Steven Schockaert
M. Serrurier
Christel Vrain
21
13
0
13 Dec 2019
Transparent Classification with Multilayer Logical Perceptrons and Random Binarization
Zhuo Wang
Wei Zhang
Ning Liu
Jianyong Wang
11
29
0
10 Dec 2019
LIBRE: Learning Interpretable Boolean Rule Ensembles
Graziano Mita
Paolo Papotti
Maurizio Filippone
Pietro Michiardi
6
16
0
15 Nov 2019
Thirteen Simple Steps for Creating An R Package with an External C++ Library
Dirk Eddelbuettel
6
0
0
14 Nov 2019
MonoNet: Towards Interpretable Models by Learning Monotonic Features
An-phi Nguyen
María Rodríguez Martínez
FAtt
16
13
0
30 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
16
10
0
09 Sep 2019
The Next 700 Policy Miners: A Universal Method for Building Policy Miners
C. C. Jiménez
Luca Corinzia
Thilo Weghorn
David Basin
14
15
0
16 Aug 2019
Visualizing Image Content to Explain Novel Image Discovery
Jake H. Lee
K. Wagstaff
11
3
0
14 Aug 2019
Measurable Counterfactual Local Explanations for Any Classifier
Adam White
Artur Garcez
FAtt
17
99
0
08 Aug 2019
FairSight: Visual Analytics for Fairness in Decision Making
Yongsu Ahn
Y. Lin
6
121
0
01 Aug 2019
An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability
X. Hunt
Ralph Abbey
Ricky Tharrington
J. Huiskens
Nina Wesdorp
MedIm
15
4
0
17 Jul 2019
Characterization of Overlap in Observational Studies
Michael Oberst
Fredrik D. Johansson
Dennis L. Wei
Tian Gao
G. Brat
David Sontag
Kush R. Varshney
CML
14
22
0
09 Jul 2019
On Validating, Repairing and Refining Heuristic ML Explanations
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
LRM
6
62
0
04 Jul 2019
Understanding artificial intelligence ethics and safety
David Leslie
FaML
AI4TS
24
345
0
11 Jun 2019
Enumeration of Distinct Support Vectors for Interactive Decision Making
Kentaro Kanamori
Satoshi Hara
Masakazu Ishihata
Hiroki Arimura
8
0
0
05 Jun 2019
Generalized Linear Rule Models
Dennis L. Wei
S. Dash
Tian Gao
Oktay Gunluk
13
63
0
05 Jun 2019
The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at Data Analysis
Cynthia Rudin
David Carlson
HAI
17
34
0
04 Jun 2019
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
31
29
0
29 May 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
35
19
0
10 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
15
1
0
04 May 2019
Interpretable multiclass classification by MDL-based rule lists
Hugo Manuel Proença
M. Leeuwen
11
48
0
01 May 2019
Optimal Sparse Decision Trees
Xiyang Hu
Cynthia Rudin
Margo Seltzer
11
173
0
29 Apr 2019
Learning Optimal Decision Trees from Large Datasets
Florent Avellaneda
6
3
0
12 Apr 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
17
21
0
01 Apr 2019
tax2vec: Constructing Interpretable Features from Taxonomies for Short Text Classification
Blaž Škrlj
Matej Martinc
Jan Kralj
Nada Lavrac
Senja Pollak
11
44
0
01 Feb 2019
Learning Interpretable Models with Causal Guarantees
Carolyn Kim
Osbert Bastani
FaML
OOD
CML
14
17
0
24 Jan 2019
Interpretable Optimal Stopping
D. Ciocan
V. Mišić
16
42
0
18 Dec 2018
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
12
219
0
26 Nov 2018
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
28
539
0
18 Sep 2018
Investigating Human + Machine Complementarity for Recidivism Predictions
S. Tan
Julius Adebayo
K. Quinn
Ece Kamar
FaML
16
54
0
28 Aug 2018
Boolean Decision Rules via Column Generation
S. Dash
Oktay Gunluk
Dennis L. Wei
22
174
0
24 May 2018
A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results
Beau Coker
Cynthia Rudin
Gary King
19
29
0
23 Apr 2018
A Minimax Surrogate Loss Approach to Conditional Difference Estimation
Siong Thye Goh
Cynthia Rudin
17
6
0
10 Mar 2018
Interpreting Complex Regression Models
Noa Avigdor-Elgrabli
Alex Libov
M. Viderman
R. Wolff
25
1
0
26 Feb 2018
Gaining Free or Low-Cost Transparency with Interpretable Partial Substitute
Tong Wang
31
8
0
12 Feb 2018
Considerations When Learning Additive Explanations for Black-Box Models
S. Tan
Giles Hooker
Paul Koch
Albert Gordo
R. Caruana
FAtt
27
20
0
26 Jan 2018
An Optimization Approach to Learning Falling Rule Lists
Chaofan Chen
Cynthia Rudin
26
39
0
06 Oct 2017
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
17
82
0
01 Oct 2016
Previous
1
2
3
Next