Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.01701
Cited By
Learning Certifiably Optimal Rule Lists for Categorical Data
6 April 2017
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Certifiably Optimal Rule Lists for Categorical Data"
50 / 101 papers shown
Title
Efficient Exploration of the Rashomon Set of Rule Set Models
Martino Ciaperoni
Han Xiao
A. Gionis
25
3
0
05 Jun 2024
Smooth Sensitivity for Learning Differentially-Private yet Accurate Rule Lists
Timothée Ly
Julien Ferry
Marie-José Huguet
Sébastien Gambs
Ulrich Aïvodji
27
0
0
18 Mar 2024
Is Machine Learning Unsafe and Irresponsible in Social Sciences? Paradoxes and Reconsidering from Recidivism Prediction Tasks
Jianhong Liu
D. Li
13
1
0
11 Nov 2023
A Path to Simpler Models Starts With Noise
Lesia Semenova
Harry Chen
Ronald E. Parr
Cynthia Rudin
33
15
0
30 Oct 2023
CONFIDERAI: a novel CONFormal Interpretable-by-Design score function for Explainable and Reliable Artificial Intelligence
Sara Narteni
Alberto Carlevaro
Fabrizio Dabbene
M. Muselli
Maurizio Mongelli
11
0
0
04 Sep 2023
Probabilistic Dataset Reconstruction from Interpretable Models
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
24
5
0
29 Aug 2023
Feature Importance Measurement based on Decision Tree Sampling
Chao Huang
Diptesh Das
Koji Tsuda
FAtt
16
2
0
25 Jul 2023
Learning Locally Interpretable Rule Ensemble
Kentaro Kanamori
13
0
0
20 Jun 2023
Explainable AI using expressive Boolean formulas
G. Rosenberg
J. K. Brubaker
M. Schuetz
Grant Salton
Zhihuai Zhu
E. Zhu
Serdar Kadioğlu
S. E. Borujeni
H. Katzgraber
30
8
0
06 Jun 2023
Rolling Lookahead Learning for Optimal Classification Trees
Z. B. Organ
Enis Kayış
Taghi Khaniyev
13
0
0
21 Apr 2023
Practical Policy Optimization with Personalized Experimentation
Mia Garrard
Hanson Wang
Benjamin Letham
Shaun Singh
Abbas Kazerouni
...
Yin Huang
Yichun Hu
Chad Zhou
Norm Zhou
E. Bakshy
13
0
0
30 Mar 2023
A Seven-Layer Model for Standardising AI Fairness Assessment
A. K. Agarwal
Harshna Agarwal
20
0
0
21 Dec 2022
Logic-Based Explainability in Machine Learning
João Marques-Silva
LRM
XAI
44
39
0
24 Oct 2022
Learning to Advise Humans in High-Stakes Settings
Nicholas Wolczynski
M. Saar-Tsechansky
Tong Wang
23
0
0
23 Oct 2022
Self-explaining deep models with logic rule reasoning
Seungeon Lee
Xiting Wang
Sungwon Han
Xiaoyuan Yi
Xing Xie
M. Cha
NAI
ReLM
LRM
27
16
0
13 Oct 2022
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design
Ali Behrouz
Mathias Lécuyer
Cynthia Rudin
Margo Seltzer
OffRL
15
2
0
13 Oct 2022
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
24
2
0
27 Sep 2022
Augmenting Interpretable Models with LLMs during Training
Chandan Singh
Armin Askari
R. Caruana
Jianfeng Gao
34
37
0
23 Sep 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
34
1
0
18 Aug 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
Dylan Slack
Satyapriya Krishna
Himabindu Lakkaraju
Sameer Singh
24
74
0
08 Jul 2022
Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features
Rahul Mazumder
X. Meng
Haoyue Wang
12
16
0
23 Jun 2022
Mixed integer linear optimization formulations for learning optimal binary classification trees
B. Alston
Hamidreza Validi
Illya V. Hicks
11
3
0
10 Jun 2022
Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach
Fan Yang
Kai He
Linxiao Yang
Hongxia Du
Jingbang Yang
Bo Yang
Liangcheng Sun
13
21
0
08 Jun 2022
bsnsing: A decision tree induction method based on recursive optimal boolean rule composition
Yan-ching Liu
27
6
0
30 May 2022
Computing the Collection of Good Models for Rule Lists
Kota Mata
Kentaro Kanamori
Hiroki Arimura
11
7
0
24 Apr 2022
Learning Interpretable, High-Performing Policies for Autonomous Driving
Rohan R. Paleja
Yaru Niu
Andrew Silva
Chace Ritchie
Sugju Choi
Matthew C. Gombolay
19
16
0
04 Feb 2022
Fast Interpretable Greedy-Tree Sums
Yan Shuo Tan
Chandan Singh
Keyan Nasseri
Abhineet Agarwal
James Duncan
Omer Ronen
M. Epland
Aaron E. Kornblith
Bin-Xia Yu
AI4CE
27
6
0
28 Jan 2022
Differentiable Rule Induction with Learned Relational Features
R. Kusters
Yusik Kim
Marine Collery
C. Marie
Shubham Gupta
24
14
0
17 Jan 2022
Interpretable and Fair Boolean Rule Sets via Column Generation
Connor Lawless
S. Dash
Oktay Gunluk
Dennis L. Wei
FaML
18
12
0
16 Nov 2021
The Impact of Algorithmic Risk Assessments on Human Predictions and its Analysis via Crowdsourcing Studies
Riccardo Fogliato
Alexandra Chouldechova
Zachary Chase Lipton
24
31
0
03 Sep 2021
FADE: FAir Double Ensemble Learning for Observable and Counterfactual Outcomes
Alan Mishler
Edward H. Kennedy
FaML
27
23
0
01 Sep 2021
Quantifying Explainability in NLP and Analyzing Algorithms for Performance-Explainability Tradeoff
Michael J. Naylor
C. French
Samantha R. Terker
Uday Kamath
36
10
0
12 Jul 2021
Fair Decision Rules for Binary Classification
Connor Lawless
Oktay Gunluk
FaML
26
6
0
03 Jul 2021
Characterizing the risk of fairwashing
Ulrich Aïvodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
23
27
0
14 Jun 2021
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lió
Marco Gori
S. Melacci
FAtt
XAI
25
78
0
12 Jun 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
24
0
0
14 May 2021
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
João Marques-Silva
XAI
9
44
0
14 May 2021
Human strategic decision making in parametrized games
Sam Ganzfried
11
0
0
30 Apr 2021
Robust subgroup discovery
Hugo Manuel Proença
Peter Grünwald
Thomas Bäck
M. Leeuwen
23
11
0
25 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
A Scalable Two Stage Approach to Computing Optimal Decision Sets
Alexey Ignatiev
Edward Lam
Peter James Stuckey
João Marques-Silva
6
14
0
03 Feb 2021
Bayesian Pyramids: Identifiable Multilayer Discrete Latent Structure Models for Discrete Data
Yuqi Gu
David B. Dunson
32
19
0
25 Jan 2021
Distilling Interpretable Models into Human-Readable Code
Walker Ravina
Ethan Sterling
Olexiy Oryeshko
Nathan Bell
Honglei Zhuang
Xuanhui Wang
Yonghui Wu
Alexander Grushetsky
30
2
0
21 Jan 2021
Better Short than Greedy: Interpretable Models through Optimal Rule Boosting
Mario Boley
Simon Teshuva
P. L. Bodic
Geoffrey I. Webb
13
5
0
21 Jan 2021
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
11
116
0
19 Jan 2021
Explainable AI and Adoption of Financial Algorithmic Advisors: an Experimental Study
D. David
Yehezkel S. Resheff
Talia Tron
13
23
0
05 Jan 2021
MAIRE -- A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers
Rajat Sharma
N. Reddy
V. Kamakshi
N. C. Krishnan
Shweta Jain
FAtt
17
7
0
03 Nov 2020
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
João Marques-Silva
FAtt
16
84
0
21 Oct 2020
Optimal Decision Lists using SAT
Jinqiang Yu
Alexey Ignatiev
P. L. Bodic
Peter James Stuckey
20
9
0
19 Oct 2020
1
2
3
Next