ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07713
15
4

An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability

17 July 2019
X. Hunt
Ralph Abbey
Ricky Tharrington
J. Huiskens
Nina Wesdorp
    MedIm
ArXivPDFHTML
Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.

View on arXiv
Comments on this paper