Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.09194
Cited By
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
27 March 2017
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference"
50 / 52 papers shown
Title
Path Gradients after Flow Matching
Lorenz Vaitl
Leon Klein
14
0
0
15 May 2025
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
41
0
0
03 Oct 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
51
4
0
30 Jun 2024
Dream-in-Style: Text-to-3D Generation Using Stylized Score Distillation
Hubert Kompanowski
Binh-Son Hua
DiffM
64
3
0
05 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
39
4
0
23 Mar 2024
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
29
0
0
13 Mar 2024
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
43
2
0
05 Mar 2024
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
20
6
0
04 Dec 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
41
0
04 Oct 2023
Variational Prediction
Alexander A. Alemi
Ben Poole
BDL
16
2
0
14 Jul 2023
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
41
1
0
12 Jul 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
37
52
0
03 Jul 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
27
2
0
22 Feb 2023
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
39
80
0
02 Nov 2022
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
29
12
0
27 Oct 2022
DreamFusion: Text-to-3D using 2D Diffusion
Ben Poole
Ajay Jain
Jonathan T. Barron
B. Mildenhall
76
2,319
0
29 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
39
15
0
23 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
32
8
0
13 Jun 2022
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
Adrián Javaloy
Maryam Meghdadi
Isabel Valera
27
27
0
09 Jun 2022
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
25
7
0
07 May 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
30
46
0
08 Mar 2022
Bayesian Nonparametrics for Offline Skill Discovery
Valentin Villecroze
H. Braviner
Panteha Naderian
Chris J. Maddison
G. Loaiza-Ganem
BDL
OffRL
26
8
0
09 Feb 2022
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
40
72
0
06 Dec 2021
Challenging the Semi-Supervised VAE Framework for Text Classification
G. Felhi
Joseph Le Roux
Djamé Seddah
BDL
21
2
0
27 Sep 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
29
20
0
21 Jun 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
Flexible mean field variational inference using mixtures of non-overlapping exponential families
J. Spence
17
4
0
14 Oct 2020
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
21
1
0
13 Oct 2020
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
8
38
0
18 Jun 2020
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
33
27
0
03 May 2020
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
27
266
0
08 Nov 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
25
58
0
04 Jul 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
24
40
0
24 Jan 2018
1
2
Next