ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.07370
  4. Cited By
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

21 March 2017
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
    BDL
ArXivPDFHTML

Papers citing "REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models"

50 / 59 papers shown
Title
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
65
5
0
13 Mar 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Efficient Learning of Discrete-Continuous Computation Graphs
Efficient Learning of Discrete-Continuous Computation Graphs
David Friede
Mathias Niepert
13
3
0
26 Jul 2023
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Liyuan Liu
Chengyu Dong
Xiaodong Liu
Bin-Xia Yu
Jianfeng Gao
BDL
20
20
0
17 Apr 2023
Learning Sparsity of Representations with Discrete Latent Variables
Learning Sparsity of Representations with Discrete Latent Variables
Zhao Xu
Daniel Oñoro-Rubio
G. Serra
Mathias Niepert
13
0
0
03 Apr 2023
Efficient Attention via Control Variates
Efficient Attention via Control Variates
Lin Zheng
Jianbo Yuan
Chong-Jun Wang
Lingpeng Kong
31
18
0
09 Feb 2023
Automatic Differentiation of Programs with Discrete Randomness
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
23
34
0
16 Oct 2022
SIMPLE: A Gradient Estimator for $k$-Subset Sampling
SIMPLE: A Gradient Estimator for kkk-Subset Sampling
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Guy Van den Broeck
BDL
42
24
0
04 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Variational Open-Domain Question Answering
Variational Open-Domain Question Answering
Valentin Liévin
Andreas Geert Motzfeldt
Ida Riis Jensen
Ole Winther
OOD
BDL
36
8
0
23 Sep 2022
Stochastic gradient descent with gradient estimator for categorical
  features
Stochastic gradient descent with gradient estimator for categorical features
Paul Peseux
Maxime Bérar
Thierry Paquet
Victor Nicollet
25
0
0
08 Sep 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
23
2
0
20 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
40
18
0
26 May 2022
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
Differentiable Subset Pruning of Transformer Heads
Differentiable Subset Pruning of Transformer Heads
Jiaoda Li
Ryan Cotterell
Mrinmaya Sachan
37
53
0
10 Aug 2021
Fitting summary statistics of neural data with a differentiable spiking
  network simulator
Fitting summary statistics of neural data with a differentiable spiking network simulator
G. Bellec
Shuqi Wang
Alireza Modirshanechi
Johanni Brea
W. Gerstner
34
11
0
18 Jun 2021
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
AAML
35
76
0
05 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
25
15
0
01 Apr 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to
  Encode Predictions in their Interpretations
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
82
70
0
02 Mar 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space
  Search
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
90
0
02 Mar 2021
Probabilistic Circuits for Variational Inference in Discrete Graphical
  Models
Probabilistic Circuits for Variational Inference in Discrete Graphical Models
Andy Shih
Stefano Ermon
TPM
18
20
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
136
48
0
20 Oct 2020
Kohn-Sham equations as regularizer: building prior knowledge into
  machine-learned physics
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
32
120
0
17 Sep 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov
V. Yanush
B. Flach
MQ
34
10
0
04 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Robust Training of Vector Quantized Bottleneck Models
Robust Training of Vector Quantized Bottleneck Models
A. Lancucki
J. Chorowski
Guillaume Sanchez
R. Marxer
Nanxin Chen
Hans J. G. A. Dolfing
Sameer Khurana
Tanel Alumäe
Antoine Laurent
15
58
0
18 May 2020
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured
  2D Data
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured 2D Data
Sebastian Lunz
Yingzhen Li
Andrew Fitzgibbon
Nate Kushman
3DV
GAN
17
54
0
28 Feb 2020
Learning in the Frequency Domain
Learning in the Frequency Domain
Kai Xu
Minghai Qin
Fei Sun
Yuhao Wang
Yen-kuang Chen
Fengbo Ren
39
393
0
27 Feb 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
25
49
0
14 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
UNAS: Differentiable Architecture Search Meets Reinforcement Learning
UNAS: Differentiable Architecture Search Meets Reinforcement Learning
Arash Vahdat
Arun Mallya
Ming-Yu Liu
Jan Kautz
30
33
0
16 Dec 2019
Learning with Multiplicative Perturbations
Learning with Multiplicative Perturbations
Xiulong Yang
Shihao Ji
AAML
14
4
0
04 Dec 2019
ARSM Gradient Estimator for Supervised Learning to Rank
ARSM Gradient Estimator for Supervised Learning to Rank
Siamak Zamani Dadaneh
Shahin Boluki
Mingyuan Zhou
Xiaoning Qian
17
7
0
01 Nov 2019
A Unified Framework for Data Poisoning Attack to Graph-based
  Semi-supervised Learning
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning
Xuanqing Liu
Si Si
Xiaojin Zhu
Yang Li
Cho-Jui Hsieh
AAML
27
76
0
30 Oct 2019
Collapsed Amortized Variational Inference for Switching Nonlinear
  Dynamical Systems
Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems
Zhe Dong
Bryan Seybold
Kevin Patrick Murphy
Hung Bui
BDL
24
30
0
21 Oct 2019
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Guy Van den Broeck
24
14
0
05 Oct 2019
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
19
167
0
26 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
26
397
0
25 Jun 2019
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural
  Network Training
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank D. Wood
25
4
0
13 Jun 2019
Improving Discrete Latent Representations With Differentiable
  Approximation Bridges
Improving Discrete Latent Representations With Differentiable Approximation Bridges
Jason Ramapuram
Russ Webb
DRL
11
9
0
09 May 2019
Routing Networks and the Challenges of Modular and Compositional
  Computation
Routing Networks and the Challenges of Modular and Compositional Computation
Clemens Rosenbaum
Ignacio Cases
Matthew D Riemer
Tim Klinger
34
78
0
29 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
17
269
0
29 Mar 2019
Cooperative Learning of Disjoint Syntax and Semantics
Cooperative Learning of Disjoint Syntax and Semantics
Serhii Havrylov
Germán Kruszewski
Armand Joulin
18
48
0
25 Feb 2019
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
22
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
17
30
0
01 Jun 2018
12
Next