ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04730
  4. Cited By
Understanding Black-box Predictions via Influence Functions

Understanding Black-box Predictions via Influence Functions

14 March 2017
Pang Wei Koh
Percy Liang
    TDI
ArXivPDFHTML

Papers citing "Understanding Black-box Predictions via Influence Functions"

50 / 620 papers shown
Title
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Alon Jacovi
Jasmijn Bastings
Sebastian Gehrmann
Yoav Goldberg
Katja Filippova
41
15
0
27 Jan 2022
Identifying a Training-Set Attack's Target Using Renormalized Influence
  Estimation
Identifying a Training-Set Attack's Target Using Renormalized Influence Estimation
Zayd Hammoudeh
Daniel Lowd
TDI
29
28
0
25 Jan 2022
Consistent Approximations in Composite Optimization
Consistent Approximations in Composite Optimization
J. Royset
21
8
0
13 Jan 2022
LoMar: A Local Defense Against Poisoning Attack on Federated Learning
LoMar: A Local Defense Against Poisoning Attack on Federated Learning
Xingyu Li
Zhe Qu
Shangqing Zhao
Bo Tang
Zhuo Lu
Yao-Hong Liu
AAML
41
92
0
08 Jan 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN
  Interpretability
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
Sílvia Casacuberta
Esra Suel
Seth Flaxman
FAtt
21
1
0
31 Dec 2021
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal
  Causality of Deep Classification Training
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training
Xiangli Yang
Yun Lin
Ruofan Liu
Zhenfeng He
Chao Wang
Jinlong Dong
Hong Mei
14
5
0
31 Dec 2021
Explainability Is in the Mind of the Beholder: Establishing the
  Foundations of Explainable Artificial Intelligence
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
44
21
0
29 Dec 2021
Towards Relatable Explainable AI with the Perceptual Process
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
29
62
0
28 Dec 2021
Counterfactual Memorization in Neural Language Models
Counterfactual Memorization in Neural Language Models
Chiyuan Zhang
Daphne Ippolito
Katherine Lee
Matthew Jagielski
Florian Tramèr
Nicholas Carlini
34
129
0
24 Dec 2021
Towards a Science of Human-AI Decision Making: A Survey of Empirical
  Studies
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
GPEX, A Framework For Interpreting Artificial Neural Networks
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
52
4
0
18 Dec 2021
Personalized On-Device E-health Analytics with Decentralized Block
  Coordinate Descent
Personalized On-Device E-health Analytics with Decentralized Block Coordinate Descent
Guanhua Ye
Hongzhi Yin
Tong Chen
Miao Xu
Quoc Viet Hung Nguyen
Jiangning Song
46
9
0
17 Dec 2021
Rethinking Influence Functions of Neural Networks in the
  Over-parameterized Regime
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
32
21
0
15 Dec 2021
Robust Neural Network Classification via Double Regularization
Robust Neural Network Classification via Double Regularization
Olof Zetterqvist
Rebecka Jörnsten
J. Jonasson
19
1
0
15 Dec 2021
Boosting Active Learning via Improving Test Performance
Boosting Active Learning via Improving Test Performance
Tianyang Wang
Xingjian Li
Pengkun Yang
Guosheng Hu
Xiangrui Zeng
Siyu Huang
Chengzhong Xu
Min Xu
33
33
0
10 Dec 2021
DiPS: Differentiable Policy for Sketching in Recommender Systems
DiPS: Differentiable Policy for Sketching in Recommender Systems
Aritra Ghosh
Saayan Mitra
Andrew Lan
BDL
OffRL
21
2
0
08 Dec 2021
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Youngjune Lee
Oh Joon Kwon
Haejun Lee
Joonyoung Kim
Kangwook Lee
Kee-Eung Kim
22
9
0
07 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Scaling Up Influence Functions
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
38
91
0
06 Dec 2021
Explainable Deep Learning in Healthcare: A Methodological Survey from an
  Attribution View
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View
Di Jin
Elena Sergeeva
W. Weng
Geeticka Chauhan
Peter Szolovits
OOD
56
55
0
05 Dec 2021
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for
  Machine Learning
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
32
12
0
04 Dec 2021
A General Framework for Defending Against Backdoor Attacks via Influence
  Graph
A General Framework for Defending Against Backdoor Attacks via Influence Graph
Xiaofei Sun
Jiwei Li
Xiaoya Li
Ziyao Wang
Tianwei Zhang
Han Qiu
Fei Wu
Chun Fan
AAML
TDI
24
5
0
29 Nov 2021
Going Grayscale: The Road to Understanding and Improving Unlearnable
  Examples
Going Grayscale: The Road to Understanding and Improving Unlearnable Examples
Zhuoran Liu
Zhengyu Zhao
A. Kolmus
Tijn Berns
Twan van Laarhoven
Tom Heskes
Martha Larson
AAML
41
6
0
25 Nov 2021
Efficient Decompositional Rule Extraction for Deep Neural Networks
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
16
16
0
24 Nov 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
33
2
0
24 Nov 2021
Fast Yet Effective Machine Unlearning
Fast Yet Effective Machine Unlearning
Ayush K Tarun
Vikram S Chundawat
Murari Mandal
Mohan S. Kankanhalli
MU
33
174
0
17 Nov 2021
Revisiting Methods for Finding Influential Examples
Revisiting Methods for Finding Influential Examples
Karthikeyan K
Anders Søgaard
TDI
22
30
0
08 Nov 2021
Adversarial Attacks on Knowledge Graph Embeddings via Instance
  Attribution Methods
Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods
Peru Bhardwaj
John D. Kelleher
Luca Costabello
Declan O’Sullivan
21
19
0
04 Nov 2021
Provably efficient, succinct, and precise explanations
Provably efficient, succinct, and precise explanations
Guy Blanc
Jane Lange
Li-Yang Tan
FAtt
37
35
0
01 Nov 2021
Explaining Latent Representations with a Corpus of Examples
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
18
37
0
28 Oct 2021
Adversarial Neuron Pruning Purifies Backdoored Deep Models
Adversarial Neuron Pruning Purifies Backdoored Deep Models
Dongxian Wu
Yisen Wang
AAML
51
275
0
27 Oct 2021
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for
  Machine Learning
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning
Yongchan Kwon
James Zou
TDI
44
122
0
26 Oct 2021
Quantifying Epistemic Uncertainty in Deep Learning
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
Interpreting Deep Learning Models in Natural Language Processing: A
  Review
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
24
45
0
20 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
31
33
0
16 Oct 2021
A Framework for Learning to Request Rich and Contextually Useful
  Information from Humans
A Framework for Learning to Request Rich and Contextually Useful Information from Humans
Khanh Nguyen
Yonatan Bisk
Hal Daumé
54
16
0
14 Oct 2021
Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks
Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks
Shawn Shan
A. Bhagoji
Haitao Zheng
Ben Y. Zhao
AAML
99
50
0
13 Oct 2021
Influence Tuning: Demoting Spurious Correlations via Instance
  Attribution and Instance-Driven Updates
Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates
Xiaochuang Han
Yulia Tsvetkov
TDI
36
30
0
07 Oct 2021
Influence-Balanced Loss for Imbalanced Visual Classification
Influence-Balanced Loss for Imbalanced Visual Classification
Seulki Park
Jongin Lim
Younghan Jeon
J. Choi
CVBM
90
132
0
06 Oct 2021
AdjointBackMapV2: Precise Reconstruction of Arbitrary CNN Unit's
  Activation via Adjoint Operators
AdjointBackMapV2: Precise Reconstruction of Arbitrary CNN Unit's Activation via Adjoint Operators
Qing Wan
Siu Wun Cheung
Yoonsuck Choe
32
0
0
04 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Improving Fairness for Data Valuation in Horizontal Federated Learning
Improving Fairness for Data Valuation in Horizontal Federated Learning
Zhenan Fan
Huang Fang
Zirui Zhou
Jian Pei
M. Friedlander
Changxin Liu
Yong Zhang
TDI
FedML
45
47
0
19 Sep 2021
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Neil G. Marchant
Benjamin I. P. Rubinstein
Scott Alfeld
MU
AAML
28
69
0
17 Sep 2021
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Saneem A. Chemmengath
A. Azad
Ronny Luss
Amit Dhurandhar
FAtt
34
10
0
16 Sep 2021
AutoTriggER: Label-Efficient and Robust Named Entity Recognition with
  Auxiliary Trigger Extraction
AutoTriggER: Label-Efficient and Robust Named Entity Recognition with Auxiliary Trigger Extraction
Dong-Ho Lee
Ravi Kiran Selvam
Sheikh Muhammad Sarwar
Bill Yuchen Lin
Fred Morstatter
Jay Pujara
Elizabeth Boschee
James Allan
Xiang Ren
44
2
0
10 Sep 2021
IFBiD: Inference-Free Bias Detection
IFBiD: Inference-Free Bias Detection
Ignacio Serna
Daniel DeAlcala
Aythami Morales
Julian Fierrez
J. Ortega-Garcia
CVBM
39
11
0
09 Sep 2021
Counterfactual Evaluation for Explainable AI
Counterfactual Evaluation for Explainable AI
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
CML
38
14
0
05 Sep 2021
An unsupervised framework for tracing textual sources of moral change
An unsupervised framework for tracing textual sources of moral change
Aida Ramezani
Zining Zhu
Frank Rudzicz
Yang Xu
19
11
0
01 Sep 2021
Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning
Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning
Linyang Li
Demin Song
Xiaonan Li
Jiehang Zeng
Ruotian Ma
Xipeng Qiu
33
135
0
31 Aug 2021
Previous
123...678...111213
Next