Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.04730
Cited By
Understanding Black-box Predictions via Influence Functions
14 March 2017
Pang Wei Koh
Percy Liang
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Black-box Predictions via Influence Functions"
50 / 620 papers shown
Title
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
24
129
0
11 Jan 2019
Interpretable CNNs for Object Classification
Quanshi Zhang
Xin Eric Wang
Ying Nian Wu
Huilin Zhou
Song-Chun Zhu
24
54
0
08 Jan 2019
Contamination Attacks and Mitigation in Multi-Party Machine Learning
Jamie Hayes
O. Ohrimenko
AAML
FedML
25
74
0
08 Jan 2019
Explaining AlphaGo: Interpreting Contextual Effects in Neural Networks
Zenan Ling
Haotian Ma
Yu Yang
Robert C. Qiu
Song-Chun Zhu
Quanshi Zhang
MILM
14
3
0
08 Jan 2019
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
Peter F. Schulam
Suchi Saria
OOD
27
103
0
02 Jan 2019
Soft Autoencoder and Its Wavelet Adaptation Interpretation
Fenglei Fan
Mengzhou Li
Yueyang Teng
Ge Wang
24
3
0
31 Dec 2018
Mining Interpretable AOG Representations from Convolutional Networks via Active Question Answering
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
19
14
0
18 Dec 2018
Explaining Neural Networks Semantically and Quantitatively
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
FAtt
23
54
0
18 Dec 2018
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
46
715
0
12 Dec 2018
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,034
0
29 Nov 2018
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
22
0
0
21 Nov 2018
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
BDL
16
47
0
07 Nov 2018
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
27
103
0
23 Oct 2018
Efficient Augmentation via Data Subsampling
Michael Kuchnik
Virginia Smith
27
22
0
11 Oct 2018
Understanding the Origins of Bias in Word Embeddings
Marc-Etienne Brunet
Colleen Alkalay-Houlihan
Ashton Anderson
R. Zemel
FaML
26
198
0
08 Oct 2018
Visually Communicating and Teaching Intuition for Influence Functions
Aaron Fisher
Edward H. Kennedy
27
51
0
08 Oct 2018
SNIP: Single-shot Network Pruning based on Connection Sensitivity
Namhoon Lee
Thalaiyasingam Ajanthan
Philip Torr
VLM
96
1,176
0
04 Oct 2018
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
26
0
0
29 Sep 2018
Stakeholders in Explainable AI
Alun D. Preece
Daniel Harborne
Dave Braines
Richard J. Tomsett
Supriyo Chakraborty
15
154
0
29 Sep 2018
Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks
Ramin M. Hasani
Alexander Amini
Mathias Lechner
Felix Naser
Radu Grosu
Daniela Rus
28
25
0
11 Sep 2018
Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks
Ambra Demontis
Marco Melis
Maura Pintor
Matthew Jagielski
Battista Biggio
Alina Oprea
Cristina Nita-Rotaru
Fabio Roli
SILM
AAML
19
11
0
08 Sep 2018
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
23
53
0
08 Sep 2018
Zero-shot Transfer Learning for Semantic Parsing
J. Dadashkarimi
Alexander R. Fabbri
S. Tatikonda
Dragomir R. Radev
23
4
0
27 Aug 2018
XAI Beyond Classification: Interpretable Neural Clustering
Xi Peng
Yunfan Li
Ivor W. Tsang
Erik Cambria
Jiancheng Lv
Qiufeng Wang
29
74
0
22 Aug 2018
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Reinforcement Learning for Autonomous Defence in Software-Defined Networking
Yi Han
Benjamin I. P. Rubinstein
Tamas Abraham
T. Alpcan
O. Vel
S. Erfani
David Hubczenko
C. Leckie
Paul Montague
AAML
22
68
0
17 Aug 2018
Sequence to Logic with Copy and Cache
J. Dadashkarimi
S. Tatikonda
33
0
0
19 Jul 2018
Automated Data Slicing for Model Validation:A Big data - AI Integration Approach
Yeounoh Chung
Tim Kraska
N. Polyzotis
Ki Hyun Tae
Steven Euijong Whang
19
129
0
16 Jul 2018
Learning Implicit Generative Models by Teaching Explicit Ones
Chao Du
Kun Xu
Chongxuan Li
Jun Zhu
Bo Zhang
DRL
GAN
14
9
0
10 Jul 2018
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
14
196
0
09 Jul 2018
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
27
1
0
27 Jun 2018
Optimizing the Wisdom of the Crowd: Inference, Learning, and Teaching
Yao Zhou
Jingrui He
NoLa
16
7
0
23 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
Visualizing and Understanding Deep Neural Networks in CTR Prediction
Lin Guo
Hui Ye
Wenbo Su
He Liu
Kai Sun
Hang Xiang
FAtt
HAI
10
7
0
22 Jun 2018
DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks
Mostafa Karimi
Di Wu
Zhangyang Wang
Yang Shen
35
358
0
20 Jun 2018
Defining Locality for Surrogates in Post-hoc Interpretablity
Thibault Laugel
X. Renard
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
FAtt
15
80
0
19 Jun 2018
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
31
145
0
14 Jun 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
279
1,948
0
09 Jun 2018
Minnorm training: an algorithm for training over-parameterized deep neural networks
Yamini Bansal
Madhu S. Advani
David D. Cox
Andrew M. Saxe
ODL
15
18
0
03 Jun 2018
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang
Xu Chen
XAI
LRM
52
866
0
30 Apr 2018
Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models
Hendrik Strobelt
Sebastian Gehrmann
M. Behrisch
Adam Perer
Hanspeter Pfister
Alexander M. Rush
VLM
HAI
31
239
0
25 Apr 2018
Disentangling Controllable and Uncontrollable Factors of Variation by Interacting with the World
Yoshihide Sawada
DRL
21
10
0
19 Apr 2018
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
19
22
0
13 Apr 2018
Visual Analytics for Explainable Deep Learning
Jaegul Choo
Shixia Liu
HAI
XAI
22
235
0
07 Apr 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
69
1,412
0
24 Mar 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
Technical Report: When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks
Octavian Suciu
R. Marginean
Yigitcan Kaya
Hal Daumé
Tudor Dumitras
AAML
40
286
0
19 Mar 2018
Explaining Black-box Android Malware Detection
Marco Melis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
AAML
FAtt
9
43
0
09 Mar 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
241
0
09 Mar 2018
Previous
1
2
3
...
11
12
13
Next