ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08396
  4. Cited By
Learning Hierarchical Features from Generative Models

Learning Hierarchical Features from Generative Models

27 February 2017
Shengjia Zhao
Jiaming Song
Stefano Ermon
    BDL
    GAN
    OOD
    DRL
ArXivPDFHTML

Papers citing "Learning Hierarchical Features from Generative Models"

24 / 24 papers shown
Title
Likelihood-Free Variational Autoencoders
Likelihood-Free Variational Autoencoders
Chen Xu
Qiang Wang
Lijun Sun
DiffM
DRL
159
0
0
24 Apr 2025
Evolved Hierarchical Masking for Self-Supervised Learning
Evolved Hierarchical Masking for Self-Supervised Learning
Zhanzhou Feng
Shiliang Zhang
109
0
0
12 Apr 2025
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
71
158
0
28 Feb 2017
An Architecture for Deep, Hierarchical Generative Models
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
AI4CE
BDL
70
53
0
08 Dec 2016
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRL
SSL
BDL
73
340
0
15 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
125
675
0
08 Nov 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
196
2,509
0
16 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
135
1,818
0
15 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,235
0
12 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
72
1,314
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
141
0
31 May 2016
Learning to Generate with Memory
Learning to Generate with Memory
Chongxuan Li
Jun Zhu
Bo Zhang
BDL
90
42
0
24 Feb 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
95
911
0
06 Feb 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
243
14,005
0
19 Nov 2015
Deconstructing the Ladder Network Architecture
Deconstructing the Ladder Network Architecture
Mohammad Pezeshki
Linxi Fan
Philemon Brakel
Aaron Courville
Yoshua Bengio
72
98
0
19 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
120
1,145
0
05 Nov 2015
Deep Generative Image Models using a Laplacian Pyramid of Adversarial
  Networks
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Emily L. Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
GAN
90
2,241
0
18 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
308
4,175
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
279
6,925
0
12 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
From neural PCA to deep unsupervised learning
From neural PCA to deep unsupervised learning
Harri Valpola
BDL
79
184
0
28 Nov 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
232
8,401
0
28 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
121
2,258
0
30 Oct 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
587
15,874
0
12 Nov 2013
1