Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.03673
Cited By
Bayesian Probabilistic Numerical Methods
13 February 2017
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Probabilistic Numerical Methods"
26 / 26 papers shown
Title
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
G. Yu
Osvaldo Simeone
62
0
0
18 Mar 2025
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
84
3
0
13 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
41
0
0
02 Mar 2025
Calibrated Computation-Aware Gaussian Processes
Disha Hegde
Mohamed Adil
Jon Cockayne
14
4
0
11 Oct 2024
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
24
17
0
08 May 2023
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
Mojmír Mutný
Andreas Krause
29
11
0
26 May 2022
Fenrir: Physics-Enhanced Regression for Initial Value Problems
Filip Tronarp
Nathanael Bosch
Philipp Hennig
25
13
0
02 Feb 2022
ProbNum: Probabilistic Numerics in Python
Jonathan Wenger
Nicholas Kramer
Marvin Pfortner
Jonathan Schmidt
Nathanael Bosch
...
A. Gessner
Toni Karvonen
F. Briol
Maren Mahsereci
Philipp Hennig
44
17
0
03 Dec 2021
Piecewise monotone estimation in one-parameter exponential family
Takeru Matsuda
Yuto Miyatake
17
2
0
30 Aug 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
46
19
0
22 Apr 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
34
7
0
08 Mar 2021
Small Sample Spaces for Gaussian Processes
Toni Karvonen
11
13
0
04 Mar 2021
Bayesian Quadrature on Riemannian Data Manifolds
Christian Frohlich
A. Gessner
Philipp Hennig
Bernhard Schölkopf
Georgios Arvanitidis
13
4
0
12 Feb 2021
Stable Implementation of Probabilistic ODE Solvers
Nicholas Kramer
Philipp Hennig
86
20
0
18 Dec 2020
Calibrated Adaptive Probabilistic ODE Solvers
Nathanael Bosch
Philipp Hennig
Filip Tronarp
31
29
0
15 Dec 2020
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
21
13
0
21 Oct 2020
Probabilistic Linear Solvers for Machine Learning
Jonathan Wenger
Philipp Hennig
20
17
0
19 Oct 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
33
42
0
01 Apr 2020
Data-Driven Forward Discretizations for Bayesian Inversion
Daniele Bigoni
Yuming Chen
Nicolas García Trillos
Youssef Marzouk
D. Sanz-Alonso
AI4CE
17
11
0
18 Mar 2020
A Role for Symmetry in the Bayesian Solution of Differential Equations
Junyang Wang
Jon Cockayne
Chris J. Oates
11
7
0
24 Jun 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
28
854
0
18 Jan 2019
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Filip Tronarp
Hans Kersting
Simo Särkkä
Philipp Hennig
20
63
0
08 Oct 2018
Probabilistic Linear Solvers: A Unifying View
Simon Bartels
Jon Cockayne
Ilse C. F. Ipsen
Philipp Hennig
9
24
0
08 Oct 2018
Robust and Scalable Models of Microbiome Dynamics
T. Gibson
Georg Gerber
75
35
0
11 May 2018
Neural network augmented inverse problems for PDEs
Jens Berg
K. Nystrom
16
41
0
27 Dec 2017
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
21
50
0
03 Dec 2015
1