ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.13010
15
2

Piecewise monotone estimation in one-parameter exponential family

30 August 2021
Takeru Matsuda
Yuto Miyatake
ArXivPDFHTML
Abstract

The problem of estimating a piecewise monotone sequence of normal means is called the nearly isotonic regression. For this problem, an efficient algorithm has been devised by modifying the pool adjacent violators algorithm (PAVA). In this study, we investigate estimation of a piecewise monotone parameter sequence for general one-parameter exponential families such as binomial, Poisson and chi-square. We develop an efficient algorithm based on the modified PAVA, which utilizes the duality between the natural and expectation parameters. We also provide a method for selecting the regularization parameter by using an information criterion. Simulation results demonstrate that the proposed method detects change-points in piecewise monotone parameter sequences in a data-driven manner. Applications to spectrum estimation, causal inference and discretization error quantification of ODE solvers are also presented.

View on arXiv
Comments on this paper