ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.03673
  4. Cited By
Bayesian Probabilistic Numerical Methods

Bayesian Probabilistic Numerical Methods

13 February 2017
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
ArXivPDFHTML

Papers citing "Bayesian Probabilistic Numerical Methods"

26 / 26 papers shown
Title
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
G. Yu
Osvaldo Simeone
62
0
0
18 Mar 2025
Computation-Aware Kalman Filtering and Smoothing
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
84
3
0
13 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
41
0
0
02 Mar 2025
Calibrated Computation-Aware Gaussian Processes
Calibrated Computation-Aware Gaussian Processes
Disha Hegde
Mohamed Adil
Jon Cockayne
14
4
0
11 Oct 2024
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
24
17
0
08 May 2023
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
  Spaces
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
Mojmír Mutný
Andreas Krause
27
11
0
26 May 2022
Fenrir: Physics-Enhanced Regression for Initial Value Problems
Fenrir: Physics-Enhanced Regression for Initial Value Problems
Filip Tronarp
Nathanael Bosch
Philipp Hennig
23
13
0
02 Feb 2022
ProbNum: Probabilistic Numerics in Python
ProbNum: Probabilistic Numerics in Python
Jonathan Wenger
Nicholas Kramer
Marvin Pfortner
Jonathan Schmidt
Nathanael Bosch
...
A. Gessner
Toni Karvonen
F. Briol
Maren Mahsereci
Philipp Hennig
44
17
0
03 Dec 2021
Piecewise monotone estimation in one-parameter exponential family
Piecewise monotone estimation in one-parameter exponential family
Takeru Matsuda
Yuto Miyatake
15
2
0
30 Aug 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
46
19
0
22 Apr 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep
  Learning
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
34
7
0
08 Mar 2021
Small Sample Spaces for Gaussian Processes
Small Sample Spaces for Gaussian Processes
Toni Karvonen
9
13
0
04 Mar 2021
Bayesian Quadrature on Riemannian Data Manifolds
Bayesian Quadrature on Riemannian Data Manifolds
Christian Frohlich
A. Gessner
Philipp Hennig
Bernhard Schölkopf
Georgios Arvanitidis
13
4
0
12 Feb 2021
Stable Implementation of Probabilistic ODE Solvers
Stable Implementation of Probabilistic ODE Solvers
Nicholas Kramer
Philipp Hennig
86
20
0
18 Dec 2020
Calibrated Adaptive Probabilistic ODE Solvers
Calibrated Adaptive Probabilistic ODE Solvers
Nathanael Bosch
Philipp Hennig
Filip Tronarp
31
29
0
15 Dec 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
21
13
0
21 Oct 2020
Probabilistic Linear Solvers for Machine Learning
Probabilistic Linear Solvers for Machine Learning
Jonathan Wenger
Philipp Hennig
20
17
0
19 Oct 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
33
42
0
01 Apr 2020
Data-Driven Forward Discretizations for Bayesian Inversion
Data-Driven Forward Discretizations for Bayesian Inversion
Daniele Bigoni
Yuming Chen
Nicolas García Trillos
Youssef Marzouk
D. Sanz-Alonso
AI4CE
14
11
0
18 Mar 2020
A Role for Symmetry in the Bayesian Solution of Differential Equations
A Role for Symmetry in the Bayesian Solution of Differential Equations
Junyang Wang
Jon Cockayne
Chris J. Oates
11
7
0
24 Jun 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
28
854
0
18 Jan 2019
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear
  Bayesian Filtering: A New Perspective
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Filip Tronarp
Hans Kersting
Simo Särkkä
Philipp Hennig
20
63
0
08 Oct 2018
Probabilistic Linear Solvers: A Unifying View
Probabilistic Linear Solvers: A Unifying View
Simon Bartels
Jon Cockayne
Ilse C. F. Ipsen
Philipp Hennig
9
24
0
08 Oct 2018
Robust and Scalable Models of Microbiome Dynamics
Robust and Scalable Models of Microbiome Dynamics
T. Gibson
Georg Gerber
75
35
0
11 May 2018
Neural network augmented inverse problems for PDEs
Neural network augmented inverse problems for PDEs
Jens Berg
K. Nystrom
14
41
0
27 Dec 2017
Probabilistic Integration: A Role in Statistical Computation?
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
21
50
0
03 Dec 2015
1