ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.00414
  4. Cited By
Weakly Supervised Classification in High Energy Physics

Weakly Supervised Classification in High Energy Physics

1 February 2017
Lucio Dery
Benjamin Nachman
F. Rubbo
A. Schwartzman
ArXivPDFHTML

Papers citing "Weakly Supervised Classification in High Energy Physics"

31 / 31 papers shown
Title
Nearly Optimal Sample Complexity for Learning with Label Proportions
Nearly Optimal Sample Complexity for Learning with Label Proportions
R. Busa-Fekete
Travis Dick
Claudio Gentile
Haim Kaplan
Tomer Koren
Uri Stemmer
53
0
0
08 May 2025
Strengthening Anomaly Awareness
Strengthening Anomaly Awareness
Adam Banda
Charanjit K. Khosa
V. Sanz
37
0
0
15 Apr 2025
Optimal Equivariant Architectures from the Symmetries of Matrix-Element
  Likelihoods
Optimal Equivariant Architectures from the Symmetries of Matrix-Element Likelihoods
Daniel Maître
Vishal S. Ngairangbam
M. Spannowsky
42
4
0
24 Oct 2024
Optimistic Rates for Learning from Label Proportions
Optimistic Rates for Learning from Label Proportions
Gene Li
Lin Chen
Adel Javanmard
Vahab Mirrokni
43
2
0
01 Jun 2024
FRACTAL: Fine-Grained Scoring from Aggregate Text Labels
FRACTAL: Fine-Grained Scoring from Aggregate Text Labels
Yukti Makhija
Priyanka Agrawal
Rishi Saket
A. Raghuveer
37
0
0
07 Apr 2024
Hardness of Learning Boolean Functions from Label Proportions
Hardness of Learning Boolean Functions from Label Proportions
V. Guruswami
Rishi Saket
19
0
0
28 Mar 2024
Machine Learning for Anomaly Detection in Particle Physics
Machine Learning for Anomaly Detection in Particle Physics
Vasilis Belis
Patrick Odagiu
Thea Klæboe Årrestad
35
40
0
20 Dec 2023
PAC Learning Linear Thresholds from Label Proportions
PAC Learning Linear Thresholds from Label Proportions
Anand Brahmbhatt
Rishi Saket
A. Raghuveer
44
5
0
16 Oct 2023
LLP-Bench: A Large Scale Tabular Benchmark for Learning from Label
  Proportions
LLP-Bench: A Large Scale Tabular Benchmark for Learning from Label Proportions
Anand Brahmbhatt
Mohith Pokala
Rishi Saket
A. Raghuveer
25
3
0
16 Oct 2023
Label Differential Privacy via Aggregation
Label Differential Privacy via Aggregation
Anand Brahmbhatt
Rishi Saket
Shreyas Havaldar
Anshul Nasery
A. Raghuveer
45
0
0
16 Oct 2023
Easy Learning from Label Proportions
Easy Learning from Label Proportions
R. Busa-Fekete
Heejin Choi
Travis Dick
Claudio Gentile
Andrés Munoz Medina
17
13
0
06 Feb 2023
The Tensor Data Platform: Towards an AI-centric Database System
The Tensor Data Platform: Towards an AI-centric Database System
Apurva Gandhi
Yuki Asada
Victor Fu
Advitya Gemawat
Lihao Zhang
Rathijit Sen
Carlo Curino
Jesús Camacho-Rodríguez
Matteo Interlandi
21
14
0
04 Nov 2022
Learning from Label Proportions with Instance-wise Consistency
Learning from Label Proportions with Instance-wise Consistency
Ryoma Kobayashi
Yusuke Mukuta
Tatsuya Harada
33
2
0
24 Mar 2022
Learning from Label Proportions by Learning with Label Noise
Learning from Label Proportions by Learning with Label Noise
Jianxin Zhang
Yutong Wang
Clayton Scott
NoLa
27
24
0
04 Mar 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
34
43
0
13 Oct 2021
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model
  Independent Event Classification for the Large Hadron Collider
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
T. Aarrestad
M. Beekveld
M. Bona
A. Boveia
S. Caron
...
M. White
E. Wulff
E. Wallin
K. Wozniak
Z. Zhang
21
81
0
28 May 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
31
83
0
19 Apr 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
16
14
0
17 Jul 2020
Learning from Label Proportions: A Mutual Contamination Framework
Learning from Label Proportions: A Mutual Contamination Framework
Clayton Scott
Jianxin Zhang
SSL
17
13
0
12 Jun 2020
Class Imbalance Techniques for High Energy Physics
Class Imbalance Techniques for High Energy Physics
C. Murphy
20
7
0
01 May 2019
Interpretable Deep Learning for Two-Prong Jet Classification with Jet
  Spectra
Interpretable Deep Learning for Two-Prong Jet Classification with Jet Spectra
A. Chakraborty
Sung Hak Lim
M. Nojiri
42
43
0
03 Apr 2019
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN
3DPC
36
251
0
11 Oct 2018
Deep Learning from Label Proportions for Emphysema Quantification
Deep Learning from Label Proportions for Emphysema Quantification
Gerda Bortsova
Florian Dubost
S. Ørting
Ioannis Katramados
Laurens Hogeweg
L. Thomsen
M. Wille
Marleen de Bruijne
19
30
0
23 Jul 2018
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
E. Metodiev
Jesse Thaler
23
71
0
31 Jan 2018
Learning to Classify from Impure Samples with High-Dimensional Data
Learning to Classify from Impure Samples with High-Dimensional Data
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
M. Schwartz
19
76
0
30 Jan 2018
Classification without labels: Learning from mixed samples in high
  energy physics
Classification without labels: Learning from mixed samples in high energy physics
E. Metodiev
Benjamin Nachman
Jesse Thaler
CML
13
205
0
09 Aug 2017
Pileup Mitigation with Machine Learning (PUMML)
Pileup Mitigation with Machine Learning (PUMML)
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
M. Schwartz
18
99
0
26 Jul 2017
(Machine) Learning to Do More with Less
(Machine) Learning to Do More with Less
T. Cohen
M. Freytsis
B. Ostdiek
11
81
0
28 Jun 2017
1