ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Uncertainty-based method for improving poorly labeled segmentation
  datasets
Uncertainty-based method for improving poorly labeled segmentation datasets
Ekaterina Redekop
A. Chernyavskiy
UQCV
49
10
0
16 Feb 2021
Structured Dropout Variational Inference for Bayesian Neural Networks
Structured Dropout Variational Inference for Bayesian Neural Networks
S. Nguyen
Duong Nguyen
Khai Nguyen
Khoat Than
Hung Bui
Nhat Ho
BDLDRL
70
8
0
16 Feb 2021
Don't Just Blame Over-parametrization for Over-confidence: Theoretical
  Analysis of Calibration in Binary Classification
Don't Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification
Yu Bai
Song Mei
Haiquan Wang
Caiming Xiong
83
42
0
15 Feb 2021
A generalized quadratic loss for SVM and Deep Neural Networks
A generalized quadratic loss for SVM and Deep Neural Networks
F. Portera
25
2
0
15 Feb 2021
Data-driven geophysical forecasting: Simple, low-cost, and accurate
  baselines with kernel methods
Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methods
B. Hamzi
R. Maulik
H. Owhadi
AI4TS
74
29
0
13 Feb 2021
When and How Mixup Improves Calibration
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
70
70
0
11 Feb 2021
The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
  Platforms
The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing Platforms
Lorena Qendro
Jagmohan Chauhan
Alberto Gil C. P. Ramos
Cecilia Mascolo
68
6
0
11 Feb 2021
Corner Cases for Visual Perception in Automated Driving: Some Guidance
  on Detection Approaches
Corner Cases for Visual Perception in Automated Driving: Some Guidance on Detection Approaches
Jasmin Breitenstein
Jan-Aike Termöhlen
Daniel Lipinski
Tim Fingscheidt
AAML
141
35
0
11 Feb 2021
Bayesian Inference with Certifiable Adversarial Robustness
Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker
Luca Laurenti
A. Patané
Zhoutong Chen
Zheng Zhang
Marta Z. Kwiatkowska
AAMLBDL
139
30
0
10 Feb 2021
A Deep Learning Approach for Characterizing Major Galaxy Mergers
A Deep Learning Approach for Characterizing Major Galaxy Mergers
Skanda Koppula
V. Bapst
M. Huertas-Company
Sam Blackwell
A. Grabska-Barwinska
...
Y. Dubois
Jesús Vega Ferrero
D. Koo
J. Primack
T. Back
35
5
0
09 Feb 2021
Locally Adaptive Label Smoothing for Predictive Churn
Locally Adaptive Label Smoothing for Predictive Churn
Dara Bahri
Heinrich Jiang
NoLa
64
8
0
09 Feb 2021
Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection
Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
OODD
35
3
0
09 Feb 2021
Continuous-Time Model-Based Reinforcement Learning
Continuous-Time Model-Based Reinforcement Learning
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
OffRL
71
58
0
09 Feb 2021
Estimation and Applications of Quantiles in Deep Binary Classification
Estimation and Applications of Quantiles in Deep Binary Classification
Anuj Tambwekar
Anirudh Maiya
S. Dhavala
Snehanshu Saha
UQCV
27
7
0
09 Feb 2021
STUaNet: Understanding uncertainty in spatiotemporal collective human
  mobility
STUaNet: Understanding uncertainty in spatiotemporal collective human mobility
Zhengyang Zhou
Yang Wang
Xike Xie
Lei Qiao
Yuantao Li
51
23
0
09 Feb 2021
How to Stay Curious while Avoiding Noisy TVs using Aleatoric Uncertainty
  Estimation
How to Stay Curious while Avoiding Noisy TVs using Aleatoric Uncertainty Estimation
Augustine N. Mavor-Parker
K. Young
Caswell Barry
Lewis D. Griffin
92
21
0
08 Feb 2021
Exploiting epistemic uncertainty of the deep learning models to generate
  adversarial samples
Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples
Ömer Faruk Tuna
Ferhat Ozgur Catak
M. T. Eskil
AAML
90
33
0
08 Feb 2021
Fast and Reliable Probabilistic Face Embeddings in the Wild
Fast and Reliable Probabilistic Face Embeddings in the Wild
Kai Chen
Qi Lv
Taihe Yi
CVBM
42
5
0
08 Feb 2021
On the Reproducibility of Neural Network Predictions
On the Reproducibility of Neural Network Predictions
Srinadh Bhojanapalli
Kimberly Wilber
Andreas Veit
A. S. Rawat
Seungyeon Kim
A. Menon
Sanjiv Kumar
122
35
0
05 Feb 2021
Fusion of neural networks, for LIDAR-based evidential road mapping
Fusion of neural networks, for LIDAR-based evidential road mapping
Edouard Capellier
Franck Davoine
V. Berge-Cherfaoui
You Li
60
2
0
05 Feb 2021
Keep it Simple: Data-efficient Learning for Controlling Complex Systems
  with Simple Models
Keep it Simple: Data-efficient Learning for Controlling Complex Systems with Simple Models
Thomas Power
Dmitry Berenson
83
16
0
04 Feb 2021
Trusted Multi-View Classification
Trusted Multi-View Classification
Zongbo Han
Changqing Zhang
Huazhu Fu
Qiufeng Wang
EDL
86
174
0
03 Feb 2021
Automatic Segmentation of Organs-at-Risk from Head-and-Neck CT using
  Separable Convolutional Neural Network with Hard-Region-Weighted Loss
Automatic Segmentation of Organs-at-Risk from Head-and-Neck CT using Separable Convolutional Neural Network with Hard-Region-Weighted Loss
Wenhui Lei
Haochen Mei
Zhengwentai Sun
Shan Ye
Ran Gu
Huan Wang
Rui Huang
Shichuan Zhang
Shaoting Zhang
Guotai Wang
52
33
0
03 Feb 2021
U-LanD: Uncertainty-Driven Video Landmark Detection
U-LanD: Uncertainty-Driven Video Landmark Detection
Mohammad Jafari
C. Luong
Michael Y. Tsang
A. Gu
N. V. Woudenberg
R. Rohling
T. Tsang
Purang Abolmaesumi
75
13
0
02 Feb 2021
Probabilistic Trust Intervals for Out of Distribution Detection
Probabilistic Trust Intervals for Out of Distribution Detection
Gagandeep Singh
Deepak Mishra
UQCVAAMLOOD
34
0
0
02 Feb 2021
Fail-Safe Execution of Deep Learning based Systems through Uncertainty
  Monitoring
Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring
Michael Weiss
Paolo Tonella
AAML
123
30
0
01 Feb 2021
Machine learning pipeline for battery state of health estimation
Machine learning pipeline for battery state of health estimation
D. Roman
Saurabh Saxena
Valentin Robu
Michael G. Pecht
David Flynn
60
391
0
01 Feb 2021
Synthetic Data and Hierarchical Object Detection in Overhead Imagery
Synthetic Data and Hierarchical Object Detection in Overhead Imagery
Nathan L. Clement
Alan Schoen
Arnold P. Boedihardjo
A. Jenkins
21
8
0
29 Jan 2021
Optimal strategies for reject option classifiers
Optimal strategies for reject option classifiers
V. Franc
D. Prusa
V. Voráček
68
38
0
29 Jan 2021
Low Complexity Approximate Bayesian Logistic Regression for Sparse
  Online Learning
Low Complexity Approximate Bayesian Logistic Regression for Sparse Online Learning
G. Shamir
Wojtek Szpankowski
21
6
0
28 Jan 2021
Variational Nested Dropout
Variational Nested Dropout
Yufei Cui
Yushun Mao
Ziquan Liu
Qiao Li
Antoni B. Chan
Xue Liu
Tei-Wei Kuo
Chun Jason Xue
BDL
54
5
0
27 Jan 2021
Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
  using Ensemble of Multiscale Deep Neural Networks with Spatial Attention
Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer using Ensemble of Multiscale Deep Neural Networks with Spatial Attention
Haochen Mei
Wenhui Lei
Ran Gu
Shan Ye
Zhengwentai Sun
Shichuan Zhang
Guotai Wang
74
23
0
27 Jan 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Yogesh S Rawat
M. Shah
336
524
0
15 Jan 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
85
52
0
14 Jan 2021
An evaluation of word-level confidence estimation for end-to-end
  automatic speech recognition
An evaluation of word-level confidence estimation for end-to-end automatic speech recognition
Dan Oneaţă
Alexandru Caranica
Adriana Stan
H. Cucu
UQCV
88
25
0
14 Jan 2021
Should Ensemble Members Be Calibrated?
Should Ensemble Members Be Calibrated?
Xixin Wu
Mark Gales
UQCV
54
12
0
13 Jan 2021
Estimating and Evaluating Regression Predictive Uncertainty in Deep
  Object Detectors
Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors
Ali Harakeh
Steven L. Waslander
UQCV
130
41
0
13 Jan 2021
Using uncertainty estimation to reduce false positives in liver lesion
  detection
Using uncertainty estimation to reduce false positives in liver lesion detection
Ishaan Bhat
Hugo J. Kuijf
Veronika Cheplygina
J. Pluim
MedIm
133
9
0
12 Jan 2021
On the Calibration and Uncertainty of Neural Learning to Rank Models
On the Calibration and Uncertainty of Neural Learning to Rank Models
Gustavo Penha
C. Hauff
260
30
0
12 Jan 2021
Analysis of skin lesion images with deep learning
Analysis of skin lesion images with deep learning
Josef Steppan
S. Hanke
121
14
0
11 Jan 2021
Approaching Neural Network Uncertainty Realism
Approaching Neural Network Uncertainty Realism
Joachim Sicking
Alexander Kister
Matthias Fahrland
S. Eickeler
Fabian Hüger
S. Rüping
Peter Schlicht
Tim Wirtz
50
2
0
08 Jan 2021
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefan Wrobel
UQCV
34
3
0
07 Jan 2021
Bridging In- and Out-of-distribution Samples for Their Better
  Discriminability
Bridging In- and Out-of-distribution Samples for Their Better Discriminability
Engkarat Techapanurak
Anh-Chuong Dang
Takayuki Okatani
OODD
104
3
0
07 Jan 2021
Practical Evaluation of Out-of-Distribution Detection Methods for Image
  Classification
Practical Evaluation of Out-of-Distribution Detection Methods for Image Classification
Engkarat Techapanurak
Takayuki Okatani
OODD
54
9
0
07 Jan 2021
Diminishing Uncertainty within the Training Pool: Active Learning for
  Medical Image Segmentation
Diminishing Uncertainty within the Training Pool: Active Learning for Medical Image Segmentation
V. Nath
Dong Yang
Bennett A. Landman
Daguang Xu
H. Roth
127
72
0
07 Jan 2021
A Survey of Deep RL and IL for Autonomous Driving Policy Learning
A Survey of Deep RL and IL for Autonomous Driving Policy Learning
Zeyu Zhu
Huijing Zhao
147
159
0
06 Jan 2021
CycleGAN for Interpretable Online EMT Compensation
CycleGAN for Interpretable Online EMT Compensation
Henry J Krumb
Dhritimaan Das
R. Chadda
Anirban Mukhopadhyay
MedIm
26
7
0
05 Jan 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
  of Emerging Trends
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
Q. Rahman
Peter Corke
Feras Dayoub
OOD
139
55
0
05 Jan 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
105
3
0
04 Jan 2021
Recoding latent sentence representations -- Dynamic gradient-based
  activation modification in RNNs
Recoding latent sentence representations -- Dynamic gradient-based activation modification in RNNs
Dennis Ulmer
53
0
0
03 Jan 2021
Previous
123...505152...636465
Next