ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Affine Invariant Ensemble Transform Methods to Improve Predictive
  Uncertainty in Neural Networks
Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
Diksha Bhandari
Jakiw Pidstrigach
Sebastian Reich
83
1
0
09 Sep 2023
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Shyam Nandan Rai
Fabio Cermelli
Barbara Caputo
Carlo Masone
ISegViT
77
5
0
08 Sep 2023
Have We Ever Encountered This Before? Retrieving Out-of-Distribution
  Road Obstacles from Driving Scenes
Have We Ever Encountered This Before? Retrieving Out-of-Distribution Road Obstacles from Driving Scenes
Youssef Shoeb
Robin Shing Moon Chan
Gesina Schwalbe
Azarm Nowzard
Fatma Guney
Hanno Gottschalk
71
6
0
08 Sep 2023
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Lily Goli
Cody Reading
Silvia Sellán
Alec Jacobson
Andrea Tagliasacchi
BDLUQCV
106
60
0
06 Sep 2023
Continual Evidential Deep Learning for Out-of-Distribution Detection
Continual Evidential Deep Learning for Out-of-Distribution Detection
Eduardo Aguilar
Bogdan Raducanu
Petia Radeva
Joost van de Weijer
OODDEDL
88
8
0
06 Sep 2023
Multiclass Alignment of Confidence and Certainty for Network Calibration
Multiclass Alignment of Confidence and Certainty for Network Calibration
Vinith Kugathasan
M. H. Khan
UQCV
60
1
0
06 Sep 2023
Unsupervised Out-of-Distribution Detection by Restoring Lossy Inputs
  with Variational Autoencoder
Unsupervised Out-of-Distribution Detection by Restoring Lossy Inputs with Variational Autoencoder
Zezhen Zeng
Bin Liu
OODD
76
1
0
05 Sep 2023
On the use of Mahalanobis distance for out-of-distribution detection
  with neural networks for medical imaging
On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging
Harry Anthony
Konstantinos Kamnitsas
89
12
0
04 Sep 2023
Active Neural Mapping
Active Neural Mapping
Zike Yan
Haoxiang Yang
H. Zha
104
23
0
30 Aug 2023
Quantifying Uncertainty in Answers from any Language Model and Enhancing
  their Trustworthiness
Quantifying Uncertainty in Answers from any Language Model and Enhancing their Trustworthiness
Jiuhai Chen
Jonas W. Mueller
135
71
0
30 Aug 2023
Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification
  with Cross-Modal Retrieval
Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification with Cross-Modal Retrieval
Seong-Hoon Eom
Namgyu Ho
Jaehoon Oh
Se-Young Yun
CLIPVLM
75
0
0
29 Aug 2023
Uncovering the Hidden Cost of Model Compression
Uncovering the Hidden Cost of Model Compression
Diganta Misra
Muawiz Chaudhary
Agam Goyal
Bharat Runwal
Pin-Yu Chen
VLM
97
0
0
29 Aug 2023
Diversified Ensemble of Independent Sub-Networks for Robust
  Self-Supervised Representation Learning
Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning
Amirhossein Vahidi
Lisa Wimmer
H. Gündüz
Bernd Bischl
Eyke Hüllermeier
Mina Rezaei
OODUQCV
100
4
0
28 Aug 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OODAAML
225
8
0
28 Aug 2023
Efficient Epistemic Uncertainty Estimation in Regression Ensemble Models
  Using Pairwise-Distance Estimators
Efficient Epistemic Uncertainty Estimation in Regression Ensemble Models Using Pairwise-Distance Estimators
Lucas Berry
David Meger
UD
84
2
0
25 Aug 2023
Bayesian Low-rank Adaptation for Large Language Models
Bayesian Low-rank Adaptation for Large Language Models
Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
AI4CEBDL
182
56
0
24 Aug 2023
POCO: 3D Pose and Shape Estimation with Confidence
POCO: 3D Pose and Shape Estimation with Confidence
Sai Kumar Dwivedi
Cordelia Schmid
Hongwei Yi
Michael J. Black
Dimitrios Tzionas
3DH
67
17
0
24 Aug 2023
Single-shot Bayesian approximation for neural networks
Single-shot Bayesian approximation for neural networks
K. Brach
Beate Sick
Oliver Durr
BDLUQCV
36
0
0
24 Aug 2023
Ensembling Uncertainty Measures to Improve Safety of Black-Box
  Classifiers
Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers
T. Zoppi
Andrea Ceccarelli
A. Bondavalli
UQCV
64
1
0
23 Aug 2023
Uncertainty Estimation of Transformers' Predictions via Topological
  Analysis of the Attention Matrices
Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices
Elizaveta Kostenok
D. Cherniavskii
Alexey Zaytsev
83
6
0
22 Aug 2023
CAME: Contrastive Automated Model Evaluation
CAME: Contrastive Automated Model Evaluation
Ru Peng
Qiuyang Duan
Haobo Wang
Jiachen Ma
Yanbo Jiang
Yongjun Tu
Xiu Jiang
Jiaqi Zhao
ELM
81
5
0
22 Aug 2023
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised
  Contrastive Learning and Euclidean Distance
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised Contrastive Learning and Euclidean Distance
J. Haas
OODD
48
0
0
21 Aug 2023
Deep Evidential Learning for Bayesian Quantile Regression
Deep Evidential Learning for Bayesian Quantile Regression
F. B. Hüttel
Filipe Rodrigues
Francisco Câmara Pereira
UDEDLBDLUQCV
64
5
0
21 Aug 2023
Enhancing State Estimation in Robots: A Data-Driven Approach with
  Differentiable Ensemble Kalman Filters
Enhancing State Estimation in Robots: A Data-Driven Approach with Differentiable Ensemble Kalman Filters
Xinyu Liu
Geoffrey Clark
Joseph Campbell
Yifan Zhou
H. B. Amor
79
10
0
19 Aug 2023
Robust Uncertainty Quantification Using Conformalised Monte Carlo
  Prediction
Robust Uncertainty Quantification Using Conformalised Monte Carlo Prediction
Daniel Bethell
Simos Gerasimou
R. Calinescu
44
8
0
18 Aug 2023
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion
  Trajectories
Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories
Henrik Seckler
J. Szwabiński
Ralf Metzler
61
28
0
18 Aug 2023
Discretization-Induced Dirichlet Posterior for Robust Uncertainty
  Quantification on Regression
Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression
Xuanlong Yu
Gianni Franchi
Jindong Gu
Emanuel Aldea
UQCV
68
5
0
17 Aug 2023
Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
  Alignment
Improving Anomaly Segmentation with Multi-Granularity Cross-Domain Alignment
Ji Zhang
Xiao-Jun Wu
Zhi-Qi Cheng
Qin He
Wei Li
76
5
0
16 Aug 2023
Hierarchical Uncertainty Estimation for Medical Image Segmentation
  Networks
Hierarchical Uncertainty Estimation for Medical Image Segmentation Networks
Xinyu Bai
Wenjia Bai
UQCV
45
0
0
16 Aug 2023
Dual-Branch Temperature Scaling Calibration for Long-Tailed Recognition
Dual-Branch Temperature Scaling Calibration for Long-Tailed Recognition
Jialin Guo
Zhenyu Wu
Zhiqiang Zhan
Yang Ji
44
0
0
16 Aug 2023
Endogenous Macrodynamics in Algorithmic Recourse
Endogenous Macrodynamics in Algorithmic Recourse
Patrick Altmeyer
Giovan Angela
Aleksander Buszydlik
Karol Dobiczek
A. V. Deursen
Cynthia C. S. Liem
67
7
0
16 Aug 2023
Using Artificial Populations to Study Psychological Phenomena in Neural
  Models
Using Artificial Populations to Study Psychological Phenomena in Neural Models
Jesse Roberts
Kyle Moore
Drew Wilenzick
Doug Fisher
60
6
0
15 Aug 2023
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
  Segmentation
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation
Jadie Adams
Shireen Y. Elhabian
UQCV
74
6
0
15 Aug 2023
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
  for Pixel-wise Regression
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation for Pixel-wise Regression
Anton Baumann
Thomas Roßberg
Michael Schmitt
UQCV
62
2
0
14 Aug 2023
Distance Matters For Improving Performance Estimation Under Covariate
  Shift
Distance Matters For Improving Performance Estimation Under Covariate Shift
Mélanie Roschewitz
Ben Glocker
70
1
0
14 Aug 2023
Explaining Black-Box Models through Counterfactuals
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CMLLRM
72
2
0
14 Aug 2023
How inter-rater variability relates to aleatoric and epistemic
  uncertainty: a case study with deep learning-based paraspinal muscle
  segmentation
How inter-rater variability relates to aleatoric and epistemic uncertainty: a case study with deep learning-based paraspinal muscle segmentation
Parinaz Roshanzamir
H. Rivaz
Joshua Ahn
Hamza Mirza
Neda Naghdi
Meagan Anstruther
M. C. Battié
M. Fortin
Yiming Xiao
76
3
0
14 Aug 2023
Value-Distributional Model-Based Reinforcement Learning
Value-Distributional Model-Based Reinforcement Learning
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
OffRL
68
4
0
12 Aug 2023
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
91
1
0
11 Aug 2023
Out-of-Distribution Detection for Monocular Depth Estimation
Out-of-Distribution Detection for Monocular Depth Estimation
Julia Hornauer
Adrian Holzbock
Vasileios Belagiannis
UQCV
77
4
0
11 Aug 2023
Comparing the quality of neural network uncertainty estimates for
  classification problems
Comparing the quality of neural network uncertainty estimates for classification problems
Daniel Ries
Joshua J. Michalenko
T. Ganter
R. Baiyasi
Jason Adams
UQCVBDL
66
1
0
11 Aug 2023
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
Phillip Lippe
Bastiaan S. Veeling
P. Perdikaris
Richard Turner
Johannes Brandstetter
DiffMAI4CE
136
96
0
10 Aug 2023
Dimensionality Reduction for Improving Out-of-Distribution Detection in
  Medical Image Segmentation
Dimensionality Reduction for Improving Out-of-Distribution Detection in Medical Image Segmentation
M. Woodland
Nihil Patel
Mais Al Taie
J. Yung
Tucker Netherton
Ankit B. Patel
Kristy K. Brock
OOD
81
6
0
07 Aug 2023
Redesigning Out-of-Distribution Detection on 3D Medical Images
Redesigning Out-of-Distribution Detection on 3D Medical Images
A. Vasiliuk
Daria Frolova
Mikhail Belyaev
B. Shirokikh
OOD
58
5
0
07 Aug 2023
Empirical Optimal Risk to Quantify Model Trustworthiness for Failure
  Detection
Empirical Optimal Risk to Quantify Model Trustworthiness for Failure Detection
Shuang Ao
Stefan Rueger
Advaith Siddharthan
73
3
0
06 Aug 2023
Two Sides of Miscalibration: Identifying Over and Under-Confidence
  Prediction for Network Calibration
Two Sides of Miscalibration: Identifying Over and Under-Confidence Prediction for Network Calibration
Shuang Ao
Stefan Rueger
Advaith Siddharthan
UQCV
65
9
0
06 Aug 2023
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
  Segmentation
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation
M. Dreissig
Florian Piewak
Joschka Boedecker
UQCV
53
6
0
04 Aug 2023
Likelihood-ratio-based confidence intervals for neural networks
Likelihood-ratio-based confidence intervals for neural networks
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
65
0
0
04 Aug 2023
UGainS: Uncertainty Guided Anomaly Instance Segmentation
UGainS: Uncertainty Guided Anomaly Instance Segmentation
Alexey Nekrasov
Alexander Hermans
L. Kuhnert
Bastian Leibe
103
11
0
03 Aug 2023
Joint Out-of-Distribution Detection and Uncertainty Estimation for
  Trajectory Prediction
Joint Out-of-Distribution Detection and Uncertainty Estimation for Trajectory Prediction
Julian Wiederer
Julian Schmidt
U. Kressel
Klaus C. J. Dietmayer
Vasileios Belagiannis
UQCV
125
6
0
03 Aug 2023
Previous
123...202122...636465
Next