ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03383
  4. Cited By
Disentangling factors of variation in deep representations using
  adversarial training

Disentangling factors of variation in deep representations using adversarial training

10 November 2016
Michaël Mathieu
J. Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
    DRL
    CML
ArXivPDFHTML

Papers citing "Disentangling factors of variation in deep representations using adversarial training"

13 / 263 papers shown
Title
Guiding InfoGAN with Semi-Supervision
Guiding InfoGAN with Semi-Supervision
Adrian Spurr
Emre Aksan
Otmar Hilliges
GAN
34
46
0
14 Jul 2017
Stable Distribution Alignment Using the Dual of the Adversarial Distance
Stable Distribution Alignment Using the Dual of the Adversarial Distance
Ben Usman
Kate Saenko
Brian Kulis
19
3
0
13 Jul 2017
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
40
543
0
01 Jun 2017
Unsupervised Learning of Disentangled Representations from Video
Unsupervised Learning of Disentangled Representations from Video
Emily L. Denton
Vighnesh Birodkar
DRL
CoGe
OOD
22
550
0
31 May 2017
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
17
138
0
30 May 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDL
OOD
DRL
16
309
0
24 May 2017
Semantically Decomposing the Latent Spaces of Generative Adversarial
  Networks
Semantically Decomposing the Latent Spaces of Generative Adversarial Networks
Chris Donahue
Zachary Chase Lipton
Akshay Balsubramani
Julian McAuley
GAN
33
120
0
22 May 2017
Stabilizing Adversarial Nets With Prediction Methods
Stabilizing Adversarial Nets With Prediction Methods
A. Yadav
Sohil Shah
Zheng Xu
David Jacobs
Tom Goldstein
ODL
39
89
0
20 May 2017
GeneGAN: Learning Object Transfiguration and Attribute Subspace from
  Unpaired Data
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Shuchang Zhou
Taihong Xiao
Yi Yang
Dieqiao Feng
Qinyao He
Weiran He
GAN
14
95
0
14 May 2017
Semi-Latent GAN: Learning to generate and modify facial images from
  attributes
Semi-Latent GAN: Learning to generate and modify facial images from attributes
Weidong Yin
Yanwei Fu
Leonid Sigal
Xiangyang Xue
GAN
CVBM
26
43
0
07 Apr 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
  Networks
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
GAN
61
5,553
0
30 Mar 2017
Learning to Discover Cross-Domain Relations with Generative Adversarial
  Networks
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
Taeksoo Kim
Moonsu Cha
Hyunsoo Kim
Jung Kwon Lee
Jiwon Kim
GAN
OOD
42
1,973
0
15 Mar 2017
Enlightening Deep Neural Networks with Knowledge of Confounding Factors
Enlightening Deep Neural Networks with Knowledge of Confounding Factors
Yu Zhong
G. Ettinger
24
25
0
08 Jul 2016
Previous
123456