Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.02315
Cited By
Learning from Untrusted Data
7 November 2016
Moses Charikar
Jacob Steinhardt
Gregory Valiant
FedML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning from Untrusted Data"
50 / 186 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Computing High-dimensional Confidence Sets for Arbitrary Distributions
Chao Gao
Liren Shan
Vaidehi Srinivas
Aravindan Vijayaraghavan
50
0
0
03 Apr 2025
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
84
0
0
20 Feb 2025
Entangled Mean Estimation in High-Dimensions
Ilias Diakonikolas
D. Kane
Sihan Liu
Thanasis Pittas
43
1
0
10 Jan 2025
Adaptive and oblivious statistical adversaries are equivalent
Guy Blanc
Gregory Valiant
AAML
25
0
0
17 Oct 2024
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
49
0
0
09 Aug 2024
Robust Mixture Learning when Outliers Overwhelm Small Groups
Daniil Dmitriev
Rares-Darius Buhai
Stefan Tiegel
Alexander Wolters
Gleb Novikov
Amartya Sanyal
David Steurer
Fanny Yang
52
1
0
22 Jul 2024
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
Lukas Gosch
Mahalakshmi Sabanayagam
D. Ghoshdastidar
Stephan Günnemann
AAML
45
3
0
15 Jul 2024
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
41
1
0
01 May 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
40
20
0
01 Mar 2024
Multi-Model 3D Registration: Finding Multiple Moving Objects in Cluttered Point Clouds
David Jin
Sushrut Karmalkar
Harry Zhang
Luca Carlone
3DPC
40
12
0
16 Feb 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
31
16
0
02 Feb 2024
Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation
Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Thanasis Pittas
32
1
0
19 Dec 2023
Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances
Spencer Compton
Gregory Valiant
25
2
0
05 Dec 2023
A Combinatorial Approach to Robust PCA
Weihao Kong
Mingda Qiao
Rajat Sen
11
0
0
28 Nov 2023
Pseudo-label Correction for Instance-dependent Noise Using Teacher-student Framework
Eugene Kim
NoLa
33
0
0
24 Nov 2023
Testing with Non-identically Distributed Samples
Shivam Garg
Chirag Pabbaraju
Kirankumar Shiragur
Gregory Valiant
24
0
0
19 Nov 2023
Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities
Subash Neupane
Shaswata Mitra
Ivan A. Fernandez
Swayamjit Saha
Sudip Mittal
Jingdao Chen
Nisha Pillai
Shahram Rahimi
29
12
0
12 Oct 2023
Early Warning Prediction with Automatic Labeling in Epilepsy Patients
Peng Zhang
Ting Gao
Jinqiu Guo
Jinqiao Duan
Sergey Nikolenko
29
1
0
09 Oct 2023
CRIMED: Lower and Upper Bounds on Regret for Bandits with Unbounded Stochastic Corruption
Shubhada Agrawal
Timothée Mathieu
D. Basu
Odalric-Ambrym Maillard
30
2
0
28 Sep 2023
Linear Regression using Heterogeneous Data Batches
Ayush Jain
Rajat Sen
Weihao Kong
Abhimanyu Das
A. Orlitsky
28
3
0
05 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
49
11
0
11 Aug 2023
High Dimensional Distributed Gradient Descent with Arbitrary Number of Byzantine Attackers
Puning Zhao
Zhiguo Wan
OOD
FedML
45
4
0
25 Jul 2023
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
Thanasis Pittas
38
1
0
01 May 2023
Data-Driven Subgroup Identification for Linear Regression
Zachary Izzo
Ruishan Liu
James Zou
OOD
23
4
0
29 Apr 2023
A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference
Abhinav Kumar
Miguel A. Guirao Aguilera
R. Tourani
Satyajayant Misra
AAML
32
0
0
31 Mar 2023
Beyond Moments: Robustly Learning Affine Transformations with Asymptotically Optimal Error
He Jia
Pravesh Kothari
Santosh Vempala
21
2
0
23 Feb 2023
Robust Mean Estimation Without Moments for Symmetric Distributions
Gleb Novikov
David Steurer
Stefan Tiegel
OOD
31
0
0
21 Feb 2023
Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity
Youssef Allouah
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
45
50
0
03 Feb 2023
Imbalanced Mixed Linear Regression
Pini Zilber
B. Nadler
21
5
0
29 Jan 2023
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Efficient List-Decodable Regression using Batches
Abhimanyu Das
Ayush Jain
Weihao Kong
Rajat Sen
28
4
0
23 Nov 2022
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
Learning from a Biased Sample
Roshni Sahoo
Lihua Lei
Stefan Wager
27
17
0
05 Sep 2022
Estimation Contracts for Outlier-Robust Geometric Perception
Luca Carlone
38
22
0
22 Aug 2022
How many labelers do you have? A closer look at gold-standard labels
Chen Cheng
Hilal Asi
John C. Duchi
23
6
0
24 Jun 2022
List-Decodable Covariance Estimation
Misha Ivkov
Pravesh Kothari
24
7
0
22 Jun 2022
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
22
13
0
10 Jun 2022
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
Pranjal Awasthi
Abhimanyu Das
Weihao Kong
Rajat Sen
25
6
0
09 Jun 2022
List-Decodable Sparse Mean Estimation
Shiwei Zeng
Jie Shen
27
9
0
28 May 2022
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
36
67
0
24 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
51
109
0
31 Mar 2022
Robust estimation algorithms don't need to know the corruption level
Ayush Jain
A. Orlitsky
V. Ravindrakumar
21
6
0
11 Feb 2022
Robust Linear Regression for General Feature Distribution
Tom Norman
Nir Weinberger
Kfir Y. Levy
OOD
22
2
0
04 Feb 2022
Robust supervised learning with coordinate gradient descent
Stéphane Gaïffas
Ibrahim Merad
OOD
33
2
0
31 Jan 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
35
15
0
29 Nov 2021
On the power of adaptivity in statistical adversaries
Guy Blanc
Jane Lange
Ali Malik
Li-Yang Tan
AAML
20
8
0
19 Nov 2021
Conditional Linear Regression for Heterogeneous Covariances
Brendan Juba
Leda Liang
24
0
0
15 Nov 2021
Kalman Filtering with Adversarial Corruptions
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
AAML
27
10
0
11 Nov 2021
1
2
3
4
Next