ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02315
  4. Cited By
Learning from Untrusted Data

Learning from Untrusted Data

7 November 2016
Moses Charikar
Jacob Steinhardt
Gregory Valiant
    FedML
    OOD
ArXivPDFHTML

Papers citing "Learning from Untrusted Data"

50 / 186 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Computing High-dimensional Confidence Sets for Arbitrary Distributions
Computing High-dimensional Confidence Sets for Arbitrary Distributions
Chao Gao
Liren Shan
Vaidehi Srinivas
Aravindan Vijayaraghavan
50
0
0
03 Apr 2025
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
84
0
0
20 Feb 2025
Entangled Mean Estimation in High-Dimensions
Entangled Mean Estimation in High-Dimensions
Ilias Diakonikolas
D. Kane
Sihan Liu
Thanasis Pittas
43
1
0
10 Jan 2025
Adaptive and oblivious statistical adversaries are equivalent
Adaptive and oblivious statistical adversaries are equivalent
Guy Blanc
Gregory Valiant
AAML
25
0
0
17 Oct 2024
LiD-FL: Towards List-Decodable Federated Learning
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
49
0
0
09 Aug 2024
Robust Mixture Learning when Outliers Overwhelm Small Groups
Robust Mixture Learning when Outliers Overwhelm Small Groups
Daniil Dmitriev
Rares-Darius Buhai
Stefan Tiegel
Alexander Wolters
Gleb Novikov
Amartya Sanyal
David Steurer
Fanny Yang
52
1
0
22 Jul 2024
Provable Robustness of (Graph) Neural Networks Against Data Poisoning
  and Backdoor Attacks
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
Lukas Gosch
Mahalakshmi Sabanayagam
D. Ghoshdastidar
Stephan Günnemann
AAML
45
3
0
15 Jul 2024
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
41
1
0
01 May 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
40
20
0
01 Mar 2024
Multi-Model 3D Registration: Finding Multiple Moving Objects in
  Cluttered Point Clouds
Multi-Model 3D Registration: Finding Multiple Moving Objects in Cluttered Point Clouds
David Jin
Sushrut Karmalkar
Harry Zhang
Luca Carlone
3DPC
40
12
0
16 Feb 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
31
16
0
02 Feb 2024
Clustering Mixtures of Bounded Covariance Distributions Under Optimal
  Separation
Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation
Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Thanasis Pittas
32
1
0
19 Dec 2023
Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances
Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances
Spencer Compton
Gregory Valiant
25
2
0
05 Dec 2023
A Combinatorial Approach to Robust PCA
A Combinatorial Approach to Robust PCA
Weihao Kong
Mingda Qiao
Rajat Sen
11
0
0
28 Nov 2023
Pseudo-label Correction for Instance-dependent Noise Using
  Teacher-student Framework
Pseudo-label Correction for Instance-dependent Noise Using Teacher-student Framework
Eugene Kim
NoLa
33
0
0
24 Nov 2023
Testing with Non-identically Distributed Samples
Testing with Non-identically Distributed Samples
Shivam Garg
Chirag Pabbaraju
Kirankumar Shiragur
Gregory Valiant
24
0
0
19 Nov 2023
Security Considerations in AI-Robotics: A Survey of Current Methods,
  Challenges, and Opportunities
Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities
Subash Neupane
Shaswata Mitra
Ivan A. Fernandez
Swayamjit Saha
Sudip Mittal
Jingdao Chen
Nisha Pillai
Shahram Rahimi
29
12
0
12 Oct 2023
Early Warning Prediction with Automatic Labeling in Epilepsy Patients
Early Warning Prediction with Automatic Labeling in Epilepsy Patients
Peng Zhang
Ting Gao
Jinqiu Guo
Jinqiao Duan
Sergey Nikolenko
29
1
0
09 Oct 2023
CRIMED: Lower and Upper Bounds on Regret for Bandits with Unbounded
  Stochastic Corruption
CRIMED: Lower and Upper Bounds on Regret for Bandits with Unbounded Stochastic Corruption
Shubhada Agrawal
Timothée Mathieu
D. Basu
Odalric-Ambrym Maillard
30
2
0
28 Sep 2023
Linear Regression using Heterogeneous Data Batches
Linear Regression using Heterogeneous Data Batches
Ayush Jain
Rajat Sen
Weihao Kong
Abhimanyu Das
A. Orlitsky
28
3
0
05 Sep 2023
Private Distribution Learning with Public Data: The View from Sample
  Compression
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
49
11
0
11 Aug 2023
High Dimensional Distributed Gradient Descent with Arbitrary Number of
  Byzantine Attackers
High Dimensional Distributed Gradient Descent with Arbitrary Number of Byzantine Attackers
Puning Zhao
Zhiguo Wan
OOD
FedML
45
4
0
25 Jul 2023
A Spectral Algorithm for List-Decodable Covariance Estimation in
  Relative Frobenius Norm
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
Thanasis Pittas
38
1
0
01 May 2023
Data-Driven Subgroup Identification for Linear Regression
Data-Driven Subgroup Identification for Linear Regression
Zachary Izzo
Ruishan Liu
James Zou
OOD
23
4
0
29 Apr 2023
A Generative Framework for Low-Cost Result Validation of Machine
  Learning-as-a-Service Inference
A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference
Abhinav Kumar
Miguel A. Guirao Aguilera
R. Tourani
Satyajayant Misra
AAML
32
0
0
31 Mar 2023
Beyond Moments: Robustly Learning Affine Transformations with
  Asymptotically Optimal Error
Beyond Moments: Robustly Learning Affine Transformations with Asymptotically Optimal Error
He Jia
Pravesh Kothari
Santosh Vempala
21
2
0
23 Feb 2023
Robust Mean Estimation Without Moments for Symmetric Distributions
Robust Mean Estimation Without Moments for Symmetric Distributions
Gleb Novikov
David Steurer
Stefan Tiegel
OOD
31
0
0
21 Feb 2023
Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity
Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity
Youssef Allouah
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
45
50
0
03 Feb 2023
Imbalanced Mixed Linear Regression
Imbalanced Mixed Linear Regression
Pini Zilber
B. Nadler
21
5
0
29 Jan 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Efficient List-Decodable Regression using Batches
Efficient List-Decodable Regression using Batches
Abhimanyu Das
Ayush Jain
Weihao Kong
Rajat Sen
28
4
0
23 Nov 2022
A Characterization of List Learnability
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
Learning from a Biased Sample
Learning from a Biased Sample
Roshni Sahoo
Lihua Lei
Stefan Wager
27
17
0
05 Sep 2022
Estimation Contracts for Outlier-Robust Geometric Perception
Estimation Contracts for Outlier-Robust Geometric Perception
Luca Carlone
38
22
0
22 Aug 2022
How many labelers do you have? A closer look at gold-standard labels
How many labelers do you have? A closer look at gold-standard labels
Chen Cheng
Hilal Asi
John C. Duchi
23
6
0
24 Jun 2022
List-Decodable Covariance Estimation
List-Decodable Covariance Estimation
Misha Ivkov
Pravesh Kothari
24
7
0
22 Jun 2022
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
22
13
0
10 Jun 2022
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized
  Linear Models
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
Pranjal Awasthi
Abhimanyu Das
Weihao Kong
Rajat Sen
25
6
0
09 Jun 2022
List-Decodable Sparse Mean Estimation
List-Decodable Sparse Mean Estimation
Shiwei Zeng
Jie Shen
27
9
0
28 May 2022
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
36
67
0
24 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
51
109
0
31 Mar 2022
Robust estimation algorithms don't need to know the corruption level
Robust estimation algorithms don't need to know the corruption level
Ayush Jain
A. Orlitsky
V. Ravindrakumar
21
6
0
11 Feb 2022
Robust Linear Regression for General Feature Distribution
Robust Linear Regression for General Feature Distribution
Tom Norman
Nir Weinberger
Kfir Y. Levy
OOD
22
2
0
04 Feb 2022
Robust supervised learning with coordinate gradient descent
Robust supervised learning with coordinate gradient descent
Stéphane Gaïffas
Ibrahim Merad
OOD
33
2
0
31 Jan 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to
  Combat Label Miscorrection
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
35
15
0
29 Nov 2021
On the power of adaptivity in statistical adversaries
On the power of adaptivity in statistical adversaries
Guy Blanc
Jane Lange
Ali Malik
Li-Yang Tan
AAML
20
8
0
19 Nov 2021
Conditional Linear Regression for Heterogeneous Covariances
Conditional Linear Regression for Heterogeneous Covariances
Brendan Juba
Leda Liang
24
0
0
15 Nov 2021
Kalman Filtering with Adversarial Corruptions
Kalman Filtering with Adversarial Corruptions
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
AAML
27
10
0
11 Nov 2021
1234
Next