ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02315
  4. Cited By
Learning from Untrusted Data

Learning from Untrusted Data

7 November 2016
Moses Charikar
Jacob Steinhardt
Gregory Valiant
    FedML
    OOD
ArXivPDFHTML

Papers citing "Learning from Untrusted Data"

36 / 186 papers shown
Title
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
On the adversarial robustness of robust estimators
On the adversarial robustness of robust estimators
Lifeng Lai
Erhan Bayraktar
11
10
0
11 Jun 2018
Conditional Linear Regression
Conditional Linear Regression
Diego Calderon
Brendan Juba
Sirui Li
Zong-Yi Li
Lisa Ruan
15
4
0
06 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
Strategyproof Linear Regression in High Dimensions
Strategyproof Linear Regression in High Dimensions
Yiling Chen
Chara Podimata
Ariel D. Procaccia
Nisarg Shah
10
76
0
27 May 2018
Robust Nonparametric Regression under Huber's $ε$-contamination
  Model
Robust Nonparametric Regression under Huber's εεε-contamination Model
S. Du
Yining Wang
Sivaraman Balakrishnan
Pradeep Ravikumar
Aarti Singh
28
12
0
26 May 2018
Do Outliers Ruin Collaboration?
Do Outliers Ruin Collaboration?
Mingda Qiao
6
15
0
12 May 2018
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
149
0
01 May 2018
Securing Distributed Gradient Descent in High Dimensional Statistical
  Learning
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
Lili Su
Jiaming Xu
FedML
137
35
0
26 Apr 2018
Byzantine Stochastic Gradient Descent
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Jingkai Li
FedML
24
296
0
23 Mar 2018
Efficient Algorithms for Outlier-Robust Regression
Efficient Algorithms for Outlier-Robust Regression
Adam R. Klivans
Pravesh Kothari
Raghu Meka
AAML
24
154
0
08 Mar 2018
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
23
288
0
07 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
16
1,467
0
05 Mar 2018
Best Arm Identification for Contaminated Bandits
Best Arm Identification for Contaminated Bandits
Jason M. Altschuler
Victor-Emmanuel Brunel
Alan Malek
22
45
0
26 Feb 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe
  Noise
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
70
547
0
14 Feb 2018
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Bo-wen Li
Kimberly Lu
D. Song
AAML
SILM
44
1,808
0
15 Dec 2017
Outlier-robust moment-estimation via sum-of-squares
Outlier-robust moment-estimation via sum-of-squares
Pravesh Kothari
David Steurer
14
64
0
30 Nov 2017
Provably noise-robust, regularised $k$-means clustering
Provably noise-robust, regularised kkk-means clustering
Shrinu Kushagra
Yaoliang Yu
Shai Ben-David
26
3
0
30 Nov 2017
Clustering Semi-Random Mixtures of Gaussians
Clustering Semi-Random Mixtures of Gaussians
Pranjal Awasthi
Aravindan Vijayaraghavan
23
10
0
23 Nov 2017
Learning Discrete Distributions from Untrusted Batches
Learning Discrete Distributions from Untrusted Batches
Mingda Qiao
Gregory Valiant
FedML
25
34
0
22 Nov 2017
Better Agnostic Clustering Via Relaxed Tensor Norms
Better Agnostic Clustering Via Relaxed Tensor Norms
Pravesh Kothari
Jacob Steinhardt
14
59
0
20 Nov 2017
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical
  Gaussians
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
14
146
0
20 Nov 2017
"Dave...I can assure you...that it's going to be all right..." -- A
  definition, case for, and survey of algorithmic assurances in human-autonomy
  trust relationships
"Dave...I can assure you...that it's going to be all right..." -- A definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships
Brett W. Israelsen
Nisar R. Ahmed
14
85
0
08 Nov 2017
Robust polynomial regression up to the information theoretic limit
Robust polynomial regression up to the information theoretic limit
D. Kane
Sushrut Karmalkar
Eric Price
9
19
0
10 Aug 2017
A Data Prism: Semi-Verified Learning in the Small-Alpha Regime
A Data Prism: Semi-Verified Learning in the Small-Alpha Regime
Michela Meister
Gregory Valiant
22
0
0
09 Aug 2017
Certified Defenses for Data Poisoning Attacks
Certified Defenses for Data Poisoning Attacks
Jacob Steinhardt
Pang Wei Koh
Percy Liang
AAML
27
746
0
09 Jun 2017
Does robustness imply tractability? A lower bound for planted clique in
  the semi-random model
Does robustness imply tractability? A lower bound for planted clique in the semi-random model
Jacob Steinhardt
11
17
0
17 Apr 2017
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
19
135
0
12 Apr 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
39
138
0
15 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
19
252
0
02 Mar 2017
Computationally Efficient Robust Estimation of Sparse Functionals
Computationally Efficient Robust Estimation of Sparse Functionals
S. Du
Sivaraman Balakrishnan
Aarti Singh
19
18
0
24 Feb 2017
Robust Sparse Estimation Tasks in High Dimensions
Robust Sparse Estimation Tasks in High Dimensions
Jerry Li
53
27
0
20 Feb 2017
Conditional Sparse Linear Regression
Conditional Sparse Linear Regression
Brendan Juba
27
12
0
18 Aug 2016
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
Improved Graph Clustering
Improved Graph Clustering
Yudong Chen
Sujay Sanghavi
Huan Xu
94
191
0
11 Oct 2012
Previous
1234